
The Web Application Messaging Protocol

Workgroup:
Internet-Draft:
Published:
Intended Status:
Expires:
Author:

BiDirectional or Server-Initiated HTTP
WAMP
23 July 2024
Experimental
24 January 2025
T. Oberstein
typedef int GmbH

Status of This Memo
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that
other groups may also distribute working documents as Internet-Drafts. The list of current
Internet-Drafts is at .

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts
as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 24 January 2025.

https://datatracker.ietf.org/drafts/current/

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Oberstein Expires 24 January 2025 Page 1

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents
1. WAMP Basic Profile

1.1. Basic vs Advanced Profile

1.2. Introduction

1.3. Protocol Overview

1.3.1. Realms, Sessions and Transports

1.3.2. Peers and Roles

1.3.3. Publish & Subscribe

1.3.4. Remote Procedure Calls

1.4. Design Aspects

1.4.1. Application Code

1.4.2. Language Agnostic

1.4.3. Symmetric Messaging

1.4.4. Peers with multiple Roles

1.4.5. Relationship to WebSocket

2. Building Blocks

2.1. Identifiers

2.1.1. URIs

2.1.2. IDs

2.2. Serializers

2.3. Transports

2.3.1. WebSocket Transport

2.3.2. Transport and Session Lifetime

2.3.3. Protocol Errors

3. Messages

3.1. Extensibility

3.2. No Polymorphism

3.3. Structure

8

8

8

9

9

10

11

11

11

12

12

12

13

13

13

13

13

15

16

17

18

18

19

21

21

22

22

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 2

3.4. Message Definitions

3.4.1. Session Lifecycle

3.4.2. Publish & Subscribe

3.4.3. Routed Remote Procedure Calls

3.5. Message Codes and Direction

3.6. Extension Messages

3.7. Empty Arguments and Keyword Arguments

4. Sessions

4.1. Session Establishment

4.1.1. HELLO

4.1.2. WELCOME

4.1.3. ABORT

4.2. Session Closing

4.2.1. GOODBYE

5. Publish and Subscribe

5.1. Subscribing and Unsubscribing

5.1.1. SUBSCRIBE

5.1.2. SUBSCRIBED

5.1.3. Subscribe ERROR

5.1.4. UNSUBSCRIBE

5.1.5. UNSUBSCRIBED

5.1.6. Unsubscribe ERROR

5.2. Publishing and Events

5.2.1. PUBLISH

5.2.2. PUBLISHED

5.2.3. Publish ERROR

5.2.4. EVENT

6. Remote Procedure Calls

6.1. Registering and Unregistering

6.1.1. REGISTER

22

22

23

24

26

27

27

28

30

30

33

34

35

35

37

37

38

39

40

40

40

41

41

42

43

43

44

45

45

46

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 3

6.1.2. REGISTERED

6.1.3. Register ERROR

6.1.4. UNREGISTER

6.1.5. UNREGISTERED

6.1.6. Unregister ERROR

6.2. Calling and Invocations

6.2.1. CALL

6.2.2. INVOCATION

6.2.3. YIELD

6.2.4. RESULT

6.2.5. Invocation ERROR

6.2.6. Call ERROR

6.3. Caller Leaving During an RPC Invocation

6.4. Callee Leaving During an RPC Invocation

7. Security Model

7.1. Ordering Guarantees

7.2. Transport Encryption and Integrity

7.3. Router Authentication

7.4. Client Authentication

7.5. Routers are trusted

8. Basic Profile URIs

9. WAMP Advanced Profile

9.1. Feature Announcement

9.2. Additional Messages

9.2.1. CHALLENGE

9.2.2. AUTHENTICATE

9.2.3. CANCEL

9.2.4. INTERRUPT

47

47

47

48

48

49

49

50

52

53

54

54

55

56

57

57

58

58

58

59

59

62

62

64

64

65

65

65

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 4

10. Meta API

10.1. Session Meta API

10.1.1. Events

10.1.2. Procedures

10.2. Registration Meta API

10.2.1. Events

10.2.2. Procedures

10.3. Subscriptions Meta API

10.3.1. Events

10.3.2. Procedures

11. Advanced RPC

11.1. Progressive Call Results

11.2. Progressive Call Invocations

11.3. Call Timeouts

11.4. Call Canceling

11.5. Call Re-Routing

11.6. Caller Identification

11.7. Call Trust Levels

11.8. Pattern-based Registrations

11.8.1. Prefix Matching

11.8.2. Wildcard Matching

11.8.3. Design Aspects

11.9. Shared Registration

11.9.1. Load Balancing

11.9.2. Hot Stand-By

11.10. Sharded Registration

11.10.1. "All" Calls

11.10.2. "Partitioned" Calls

11.11. Registration Revocation

65

65

67

67

72

73

75

77

79

80

83

83

91

102

103

106

107

109

109

110

111

111

114

115

115

115

115

115

115

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 5

12. Advanced PubSub

12.1. Subscriber Black- and Whitelisting

12.2. Publisher Exclusion

12.3. Publisher Identification

12.4. Publication Trust Levels

12.5. Pattern-based Subscription

12.5.1. Prefix Matching

12.5.2. Wildcard Matching

12.5.3. Design Aspects

12.6. Sharded Subscription

12.7. Event History

12.8. Event Retention

12.9. Subscription Revocation

12.10. Session Testament

13. Authentication Methods

13.1. Ticket-based Authentication

13.2. Challenge Response Authentication

13.3. Salted Challenge Response Authentication

13.4. Cryptosign-based Authentication

13.4.1. Client Authentication

13.4.2. TLS Channel Binding

13.4.3. Router Authentication

13.4.4. Trustroots and Certificates

13.4.5. Remote Attestation

13.4.6. Example Message Exchanges

13.5. Dynamic Authentication API

13.6. Authorization

14. Advanced Security Features

14.1. Payload Passthru Mode

14.2. Payload End-to-End Encryption

116

116

120

121

122

123

124

125

126

126

127

131

132

133

135

137

139

142

154

155

161

163

164

173

175

185

185

186

186

196

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 6

15. Advanced Transports and Serializers

15.1. RawSocket Transport

15.2. Message Batching

15.3. HTTP Longpoll Transport

15.4. Binary support in JSON

15.5. Multiplexed Transport

16. WAMP Interfaces

16.1. WAMP IDL

16.1.1. Application Payload Typing

16.1.2. WAMP IDL Attributes

16.1.3. WAMP Service Declaration

16.2. Interface Catalogs

16.2.1. Catalog Archive File

16.2.2. Catalog Metadata

16.2.3. Catalog Sharing and Publication

16.3. Interface Reflection

17. Router-to-Router Links

18. Advanced Profile URIs

18.1. Session Close

18.2. Authentication

18.3. Authorization

18.4. Remote Procedure Calls

18.5. Terminology

18.5.1. Fundamental

18.5.2. Authentication and Authorization (AA)

18.5.3. Remote Procedure Calls

18.5.4. Publish and Subscribe

19. IANA Considerations

20. Conformance Requirements

20.1. Terminology and Other Conventions

196

196

203

204

206

209

210

211

211

213

217

220

220

221

222

223

224

225

225

225

226

226

227

227

228

229

230

230

230

231

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 7

21. Contributors

22. Normative References

23. Informative References

Author's Address

231

231

232

232

1. WAMP Basic Profile
This document defines the Web Application Messaging Protocol (WAMP). WAMP is a routed
protocol that provides two messaging patterns: Publish & Subscribe and routed Remote
Procedure Calls. It is intended to connect application components in distributed applications.
WAMP uses WebSocket as its default transport, but can be transmitted via any other protocol that
allows for ordered, reliable, bi-directional, and message-oriented communications.

1.1. Basic vs Advanced Profile
This document first describes a Basic Profile for WAMP in its entirety, before describing an
Advanced Profile which extends the basic functionality of WAMP.

The separation into Basic and Advanced Profiles is intended to extend the reach of the protocol.
It allows implementations to start out with a minimal, yet operable and useful set of features,
and to expand that set from there. It also allows implementations that are tailored for resource-
constrained environments, where larger feature sets would not be possible. Here implementers
can weigh between resource constraints and functionality requirements, then implement an
optimal feature set for the circumstances.

Advanced Profile features are announced during session establishment, so that different
implementations can adjust their interactions to fit the commonly supported feature set.

1.2. Introduction
This section is non-normative.

The WebSocket protocol brings bi-directional real-time connections to the browser. It defines an
API at the message level, requiring users who want to use WebSocket connections in their
applications to define their own semantics on top of it.

The Web Application Messaging Protocol (WAMP) is intended to provide application developers
with the semantics they need to handle messaging between components in distributed
applications.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 8

WAMP was initially defined as a WebSocket sub-protocol, which provided Publish & Subscribe
(PubSub) functionality as well as Remote Procedure Calls (RPC) for procedures implemented in a
WAMP router. Feedback from implementers and users of this was included in a second version of
the protocol which this document defines. Among the changes was that WAMP can now run over
any transport which is message-oriented, ordered, reliable, and bi-directional.

WAMP is a routed protocol, with all components connecting to a WAMP Router, where the WAMP
Router performs message routing between the components.

WAMP provides two messaging patterns: Publish & Subscribe and routed Remote Procedure Calls.

Publish & Subscribe (PubSub) is an established messaging pattern where a component, the
Subscriber, informs the router that it wants to receive information on a topic (i.e., it subscribes to
a topic). Another component, a Publisher, can then publish to this topic, and the router
distributes events to all Subscribers.

Routed Remote Procedure Calls (RPCs) rely on the same sort of decoupling that is used by the
Publish & Subscribe pattern. A component, the Callee, announces to the router that it provides a
certain procedure, identified by a procedure name. Other components, Callers, can then call the
procedure, with the router invoking the procedure on the Callee, receiving the procedure's
result, and then forwarding this result back to the Caller. Routed RPCs differ from traditional
client-server RPCs in that the router serves as an intermediary between the Caller and the Callee.

The decoupling in routed RPCs arises from the fact that the Caller is no longer required to have
knowledge of the Callee; it merely needs to know the identifier of the procedure it wants to call.
There is also no longer a need for a direct connection between the caller and the callee, since all
traffic is routed. This enables the calling of procedures in components which are not reachable
externally (e.g. on a NATted connection) but which can establish an outgoing connection to the
WAMP router.

Combining these two patterns into a single protocol allows it to be used for the entire messaging
requirements of an application, thus reducing technology stack complexity, as well as
networking overheads.

1.3. Protocol Overview
This section is non-normative.

1.3.1. Realms, Sessions and Transports

A Realm is a WAMP routing and administrative domain, optionally protected by authentication
and authorization. WAMP messages are only routed within a Realm.

A Session is a transient conversation between two Peers attached to a Realm and running over a
Transport.

A Transport connects two WAMP Peers and provides a channel over which WAMP messages for a
WAMP Session can flow in both directions.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 9

WAMP can run over any Transport which is message-based, bidirectional, reliable and ordered.

The default transport for WAMP is WebSocket , where WAMP is an officially registered
subprotocol.

[RFC6455]

1.3.2. Peers and Roles

A WAMP Session connects two Peers, a Client and a Router. Each WAMP Peer MUST implement
one role, and MAY implement more roles.

A Client MAY implement any combination of the Roles:

Callee
Caller
Publisher
Subscriber

and a Router MAY implement either or both of the Roles:

Dealer
Broker

This document describes WAMP as in client-to-router communication. Direct client-to-
client communication is not supported by WAMP. Router-to-router communication MAY
be defined by a specific router implementation.

A Router is a component which implements one or both of the Broker and Dealer roles. A Client is
a component which implements any or all of the Subscriber, Publisher, Caller, or Callee roles.

WAMP Connections are established by Clients to a Router. Connections can use any transport that
is message-based, ordered, reliable and bi-directional, with WebSocket as the default transport.

WAMP Sessions are established over a WAMP Connection. A WAMP Session is joined to a Realm
on a Router. Routing occurs only between WAMP Sessions that have joined the same Realm.

The WAMP Basic Profile defines the parts of the protocol that are required to establish a WAMP
connection, as well as for basic interactions between the four client and two router roles. WAMP
implementations are required to implement the Basic Profile, at minimum.

The WAMP Advanced Profile defines additions to the Basic Profile which greatly extend the utility
of WAMP in real-world applications. WAMP implementations may support any subset of the
Advanced Profile features. They are required to announce those supported features during
session establishment.

•
•
•
•

•
•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 10

http://www.iana.org/assignments/websocket/websocket.xml

1.3.3. Publish & Subscribe

The Publish & Subscribe ("PubSub") messaging pattern involves peers of three different roles:

Subscriber (Client)
Publisher (Client)
Broker (Router)

A Publisher publishes events to topics by providing the topic URI and any payload for the event.
Subscribers of the topic will receive the event together with the event payload.

Subscribers subscribe to topics they are interested in with Brokers. Publishers initiate
publication first at Brokers. Brokers route events incoming from Publishers to Subscribers that
are subscribed to respective topics.

The Publisher and Subscriber will usually run application code, while the Broker works as a
generic router for events decoupling Publishers from Subscribers.

•
•
•

1.3.4. Remote Procedure Calls

The (routed) Remote Procedure Call ("RPC") messaging pattern involves peers of three different
roles:

Callee (Client)
Caller (Client)
Dealer (Router)

A Caller issues calls to remote procedures by providing the procedure URI and any arguments for
the call. The Callee will execute the procedure using the supplied arguments to the call and
return the result of the call to the Caller.

Callees register procedures they provide with Dealers. Callers initiate procedure calls first to
Dealers. Dealers route calls incoming from Callers to Callees implementing the procedure called,
and route call results back from Callees to Callers.

The Caller and Callee will usually run application code, while the Dealer works as a generic
router for remote procedure calls decoupling Callers and Callees.

•
•
•

1.4. Design Aspects
This section is non-normative.

WAMP was designed to be performant, safe and easy to implement. Its entire design was driven
by a implement, get feedback, adjust cycle.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 11

An initial version of the protocol was publicly released in March 2012. The intent was to gain
insight through implementation and use, and integrate these into a second version of the
protocol, where there would be no regard for compatibility between the two versions. Several
interoperable, independent implementations were released, and feedback from the
implementers and users was collected.

The second version of the protocol, which this RFC covers, integrates this feedback. Routed
Remote Procedure Calls are one outcome of this, where the initial version of the protocol only
allowed the calling of procedures provided by the router. Another, related outcome was the strict
separation of routing and application logic.

While WAMP was originally developed to use WebSocket as a transport, with JSON for
serialization, experience in the field revealed that other transports and serialization formats
were better suited to some use cases. For instance, with the use of WAMP in the Internet of
Things sphere, resource constraints play a much larger role than in the browser, so any reduction
of resource usage in WAMP implementations counts. This lead to the decoupling of WAMP from
any particular transport or serialization, with the establishment of minimum requirements for
both.

1.4.1. Application Code

WAMP is designed for application code to run within Clients, i.e. Peers having the roles Callee,
Caller, Publisher, and Subscriber.

Routers, i.e. Peers of the roles Brokers and Dealers are responsible for generic call and event
routing and do not run application code.

This allows the transparent exchange of Broker and Dealer implementations without affecting
the application and to distribute and deploy application components flexibly.

Note that a program that implements, for instance, the Dealer role might at the same
time implement, say, a built-in Callee. It is the Dealer and Broker that are generic, not
the program.

1.4.2. Language Agnostic

WAMP is language agnostic, i.e. can be implemented in any programming language. At the level
of arguments that may be part of a WAMP message, WAMP takes a 'superset of all' approach.
WAMP implementations may support features of the implementing language for use in
arguments, e.g. keyword arguments.

1.4.3. Symmetric Messaging

It is important to note that though the establishment of a Transport might have a inherent
asymmetry (like a TCP client establishing a WebSocket connection to a server), and Clients
establish WAMP sessions by attaching to Realms on Routers, WAMP itself is designed to be fully
symmetric for application components.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 12

After the transport and a session have been established, any application component may act as
Caller, Callee, Publisher and Subscriber at the same time. And Routers provide the fabric on top
of which WAMP runs a symmetric application messaging service.

1.4.4. Peers with multiple Roles

Note that Peers might implement more than one role: e.g. a Peer might act as Caller, Publisher
and Subscriber at the same time. Another Peer might act as both a Broker and a Dealer.

1.4.5. Relationship to WebSocket

WAMP uses WebSocket as its default transport binding, and is a registered WebSocket
subprotocol.

2. Building Blocks
WAMP is defined with respect to the following building blocks

Identifiers
Serializers
Transports

For each building block, WAMP only assumes a defined set of requirements, which allows to run
WAMP variants with different concrete bindings.

1.
2.
3.

2.1. Identifiers
2.1.1. URIs

WAMP needs to identify the following persistent resources:

Topics
Procedures
Errors

These are identified in WAMP using Uniform Resource Identifiers (URIs) that MUST be Unicode
strings.

When using JSON as WAMP serialization format, URIs (as other strings) are transmitted in UTF-8
encoding.

Examples

com.myapp.mytopic1
com.myapp.myprocedure1
com.myapp.myerror1

The URIs are understood to form a single, global, hierarchical namespace for WAMP. The namespace is
unified for topics, procedures and errors, that is these different resource types do NOT have separate
namespaces.

1.
2.
3.

[RFC3986]

[RFC3629]

•

•

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 13

To avoid resource naming conflicts, the package naming convention from Java is used, where URIs SHOULD
begin with (reversed) domain names owned by the organization defining the URI.

Relaxed/Loose URIs

URI components (the parts between two .s, the head part up to the first ., the tail part after the last .) MUST

NOT contain a ., # or whitespace characters and MUST NOT be empty (zero-length strings).

The restriction not to allow . in component strings is due to the fact that . is used to separate components,
and WAMP associates semantics with resource hierarchies, such as in pattern-based subscriptions that are
part of the Advanced Profile. The restriction not to allow empty (zero-length) strings as components is due
to the fact that this may be used to denote wildcard components with pattern-based subscriptions and
registrations in the Advanced Profile. The character # is not allowed since this is reserved for internal use
by Dealers and Brokers.

As an example, the following regular expression could be used in Python to check URIs according to the
above rules, when NO empty URI components are allowed:

When empty URI components are allowed (which is the case for specific messages that are part of the
Advanced Profile), this following regular expression can be used (shown used in Python):

Strict URIs

While the above rules MUST be followed, following a stricter URI rule is recommended: URI components
SHOULD only contain lower-case letters, digits and _.

As an example, the following regular expression could be used in Python to check URIs according to the
above rules, when NO empty URI components are allowed:

When empty URI components are allowed, which is the case for specific messages that are part of the
Advanced Profile, the following regular expression can be used (shown in Python):

Following the suggested regular expression for strict URIs will make URI components valid identifiers in
most languages (modulo URIs starting with a digit and language keywords) and the use of lower-case only
will make those identifiers unique in languages that have case-insensitive identifiers. Following this
suggestion can allow implementations to map topics, procedures and errors to the language environment in
a completely transparent way.

Reserved URIs

pattern = re.compile(r"^([^\s\.#]+\.)*([^\s\.#]+)$")

pattern = re.compile(r"^(([^\s\.#]+\.)|\.)*([^\s\.#]+)?$")

pattern = re.compile(r"^([0-9a-z_]+\.)*([0-9a-z_]+)$")

pattern = re.compile(r"^(([0-9a-z_]+\.)|\.)*([0-9a-z_]+)?$")

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 14

Further, application URIs MUST NOT use wamp as a first URI component, since this is reserved for URIs
predefined with the WAMP protocol itself.

Examples

wamp.error.not_authorized

wamp.error.procedure_already_exists

•

•

2.1.2. IDs

WAMP needs to identify the following ephemeral entities each in the scope noted:

Sessions (global scope)
Publications (global scope)
Subscriptions (router scope)
Registrations (router scope)
Requests (session scope)

These are identified in WAMP using IDs that are integers between (inclusive) 1 and 253 (9007199254740992):

IDs in the global scope MUST be drawn randomly from a uniform distribution over the complete range
[1, 2^53]
IDs in the router scope CAN be chosen freely by the specific router implementation
IDs in the session scope MUST be incremented by 1 beginning with 1 and wrapping to 1 after it reached
2^53 (for each direction - Client-to-Router and Router-to-Client) {#session_scope_id}

The reason to choose the specific lower bound as 1 rather than 0 is that 0 is the null-like (falsy)
value for many programming languages. The reason to choose the specific upper bound is that
2^53 is the largest integer such that this integer and all (positive) smaller integers can be
represented exactly in IEEE-754 doubles. Some languages (e.g. JavaScript) use doubles as their sole
number type. Most languages do have signed and unsigned 64-bit integer types that both can hold
any value from the specified range.

The following is a complete list of usage of IDs in the three categories for all WAMP messages. For a full
definition of these see messages section.

Global Scope IDs

WELCOME.Session

PUBLISHED.Publication

EVENT.Publication

Router Scope IDs

EVENT.Subscription

SUBSCRIBED.Subscription

REGISTERED.Registration

UNSUBSCRIBE.Subscription

1.
2.
3.
4.
5.

•

•
•

•

•

•

•

•

•

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 15

UNREGISTER.Registration

INVOCATION.Registration

Session Scope IDs {#session_scope_ids}

SUBSCRIBE.Request

SUBSCRIBED.Request (mirrored SUBSCRIBE.Request)

UNSUBSCRIBE.Request

UNSUBSCRIBED.Request (mirrored UNSUBSCRIBE.Request)

PUBLISH.Request

PUBLISHED.Request (mirrored PUBLISH.Request)

REGISTER.Request

REGISTERED.Request (mirrored REGISTER.Request)

UNREGISTER.Request

UNREGISTERED.Request (mirrored UNREGISTER.Request)

CALL.Request

RESULT.Request (mirrored CALL.Request)

CANCEL.Request (mirrored CALL.Request)

INVOCATION.Request

YIELD.Request (mirrored INVOCATION.Request)

INTERRUPT.Request (mirrored INVOCATION.Request)

ERROR.Request (mirrored original request ID)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

2.2. Serializers
WAMP is a message based protocol that requires serialization of messages to octet sequences to
be sent out on the wire.

A message serialization format is assumed that (at least) provides the following types:

integer (non-negative)

string (UTF-8 encoded Unicode)

bool

list

dict (with string keys)

•

•

•

•

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 16

WAMP itself only uses the above types, e.g. it does not use the JSON data types number
(non-integer) and null. The application payloads transmitted by WAMP (e.g. in call
arguments or event payloads) may use other types a concrete serialization format
supports.

There is no required serialization or set of serializations for WAMP implementations (but each
implementation MUST, of course, implement at least one serialization format). Routers SHOULD
implement more than one serialization format, enabling components using different kinds of
serializations to connect to each other.

The WAMP Basic Profile defines the following bindings for message serialization:

JSON
MessagePack
CBOR

Other bindings for serialization may be defined in the WAMP Advanced Profile.

With JSON serialization, each WAMP message is serialized according to the JSON specification as
described in .

Further, binary data follows a convention for conversion to JSON strings. For details see the
Appendix.

With MessagePack serialization, each WAMP message is serialized according to the MessagePack
specification.

Version 5 or later of MessagePack MUST BE used, since this version is able to differentiate
between strings and binary values.

With CBOR serialization, each WAMP message is serialized according to the CBOR specification as
described in .

1.
2.
3.

[RFC7159]

[RFC8949]

2.3. Transports
WAMP assumes a transport with the following characteristics:

message-based
reliable
ordered
bidirectional (full-duplex)

1.
2.
3.
4.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 17

https://msgpack.org/
https://github.com/msgpack/msgpack/blob/master/spec.md
https://github.com/msgpack/msgpack/blob/master/spec.md

There is no required transport or set of transports for WAMP implementations (but each
implementation MUST, of course, implement at least one transport). Routers SHOULD implement
more than one transport, enabling components using different kinds of transports to connect in
an application.

2.3.1. WebSocket Transport

The default transport binding for WAMP is WebSocket ().

In the Basic Profile, WAMP messages are transmitted as WebSocket messages: each WAMP
message is transmitted as a separate WebSocket message (not WebSocket frame). The Advanced
Profile may define other modes, e.g. a batched mode where multiple WAMP messages are
transmitted via single WebSocket message.

The WAMP protocol MUST BE negotiated during the WebSocket opening handshake between
Peers using the WebSocket subprotocol negotiation mechanism (section 4).

WAMP uses the following WebSocket subprotocol identifiers (for unbatched modes):

wamp.2.json

wamp.2.msgpack

wamp.2.cbor

With wamp.2.json, all WebSocket messages MUST BE of type text (UTF8 encoded payload) and
use the JSON message serialization.

With wamp.2.msgpack, all WebSocket messages MUST BE of type binary and use the
MessagePack message serialization.

With wamp.2.cbor, all WebSocket messages MUST BE of type binary and use the CBOR message
serialization.

To avoid incompatibilities merely due to naming conflicts with WebSocket subprotocol
identifiers, implementers SHOULD register identifiers for additional serialization
formats with the official WebSocket subprotocol registry.

[RFC6455]

[RFC6455]

•

•

•

2.3.2. Transport and Session Lifetime

WAMP implementations MAY choose to tie the lifetime of the underlying transport connection
for a WAMP connection to that of a WAMP session, i.e. establish a new transport-layer connection
as part of each new session establishment. They MAY equally choose to allow re-use of a
transport connection, allowing subsequent WAMP sessions to be established using the same
transport connection.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 18

The diagram below illustrates the full transport connection and session lifecycle for an
implementation which uses WebSocket over TCP as the transport and allows the re-use of a
transport connection.

 ,------. ,------.
 | Peer | | Peer |
 `--+---' TCP established `--+---'
 |<--->|
 | |
 | TLS established |
 |+<--------------------------------------->+|
 |+ +|
 |+ WebSocket established +|
 |+|<------------------------------------->|+|
 |+| |+|
 |+| WAMP established |+|
 |+|+<----------------------------------->+|+|
 |+|+ +|+|
 |+|+ +|+|
 |+|+ WAMP closed +|+|
 |+|+<----------------------------------->+|+|
 |+| |+|
 |+| |+|
 |+| WAMP established |+|
 |+|+<----------------------------------->+|+|
 |+|+ +|+|
 |+|+ +|+|
 |+|+ WAMP closed +|+|
 |+|+<----------------------------------->+|+|
 |+| |+|
 |+| WebSocket closed |+|
 |+|<------------------------------------->|+|
 |+ +|
 |+ TLS closed +|
 |+<--------------------------------------->+|
 | |
 | TCP closed |
 |<--->|
 ,--+---. ,--+---.
 | Peer | | Peer |
 `------' `------'

2.3.3. Protocol Errors

WAMP implementations MUST abort sessions (disposing all of their resources such as
subscriptions and registrations) on protocol errors caused by offending peers.

Following scenarios have to be considered protocol errors:

Receiving WELCOME message, after session was established. •

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 19

Receiving HELLO message, after session was established.

Receiving CHALLENGE message, after session was established.

Receiving GOODBYE message, before session was established.

Receiving ERROR message, before session was established.

Receiving ERROR message with invalid REQUEST.Type.

Receiving SUBSCRIBED message, before session was established.

Receiving UNSUBSCRIBED message, before session was established.

Receiving PUBLISHED message, before session was established.

Receiving RESULT message, before session was established.

Receiving REGISTERED message, before session was established.

Receiving UNREGISTERED message, before session was established.

Receiving INVOCATION message, before session was established.

Receiving YIELD message with invalid INVOCATION.Request.

Receiving message with non-sequential session scope request ID, such as SUBSCRIBE,

UNSUBSCRIBE, PUBLISH, REGISTER, UNREGISTER, and CALL. Note that there are exeptions for

CALL when the Progressive Call Invocations advanced feature is enabled. See the Progressive
Call Invocations section in the advanced profile for details.
Receiving protocol incompatible message, such as empty array, invalid WAMP message type
id, etc.
Catching error during message encoding/decoding.
Any other exceptional scenario explicitly defined in any relevant section of this specification
below (such as receiving a second HELLO within the lifetime of a session).

In all such cases WAMP implementations:

MUST send an ABORT message to the offending peer, having reason

wamp.error.protocol_violation and optional attributes in ABORT.Details such as a human
readable error message.
MUST abort the WAMP session by disposing any allocated subscriptions/registrations for that
particular client and without waiting for or processing any messages subsequently received
from the peer,
SHOULD also drop the WAMP connection at transport level (recommended to prevent denial
of service attacks)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

1.

2.

3.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 20

3. Messages
All WAMP messages are a list with a first element MessageType followed by one or more message
type specific elements:

The notation Element|type denotes a message element named Element of type type, where type is
one of

uri: a string URI as defined in URIs

id: an integer ID as defined in IDs

integer: a non-negative integer

string: a Unicode string, including the empty string

bool: a boolean value (true or false) - integers MUST NOT be used instead of boolean value

dict: a dictionary (map) where keys MUST be strings, keys MUST be unique and serialization
order is undefined (left to the serializer being used)
list: a list (array) where items can be again any of this enumeration

Example

A SUBSCRIBE message has the following format

Here is an example message conforming to the above format

 [MessageType|integer, ... one or more message type specific
 elements ...]

•

•

•

•

•

•

•

 [SUBSCRIBE, Request|id, Options|dict, Topic|uri]

 [32, 713845233, {}, "com.myapp.mytopic1"]

3.1. Extensibility
Some WAMP messages contain Options|dict or Details|dict elements. This allows for future
extensibility and implementations that only provide subsets of functionality by ignoring
unimplemented attributes. Keys in Options and Details MUST be of type string and MUST match
the regular expression [a-z][a-z0-9_]{2,} for WAMP predefined keys. Implementations MAY use
implementation-specific keys that MUST match the regular expression _[a-z0-9_]{3,}. Attributes
unknown to an implementation MUST be ignored.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 21

3.2. No Polymorphism
For a given MessageType and number of message elements the expected types are uniquely
defined. Hence there are no polymorphic messages in WAMP. This leads to a message parsing
and validation control flow that is efficient, simple to implement and simple to code for rigorous
message format checking.

3.3. Structure
The application payload (that is call arguments, call results, event payload etc) is always at the
end of the message element list. The rationale is: Brokers and Dealers have no need to inspect
(parse) the application payload. Their business is call/event routing. Having the application
payload at the end of the list allows Brokers and Dealers to skip parsing it altogether. This can
improve efficiency and performance.

3.4. Message Definitions
WAMP defines the following messages that are explained in detail in the following sections.

The messages concerning the WAMP session itself are mandatory for all Peers, i.e. a Client MUST
implement HELLO, ABORT and GOODBYE, while a Router MUST implement WELCOME, ABORT and

GOODBYE.

All other messages are mandatory per role, i.e. in an implementation that only provides a Client
with the role of Publisher MUST additionally implement sending PUBLISH and receiving

PUBLISHED and ERROR messages.

3.4.1. Session Lifecycle

3.4.1.1. HELLO
Sent by a Client to initiate opening of a WAMP session to a Router attaching to a Realm.

 [HELLO, Realm|uri, Details|dict]

3.4.1.2. WELCOME
Sent by a Router to accept a Client. The WAMP session is now open.

 [WELCOME, Session|id, Details|dict]

3.4.1.3. ABORT
Sent by a Peer to abort the opening of a WAMP session. No response is expected.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 22

 [ABORT, Details|dict, Reason|uri]

 [ABORT, Details|dict, Reason|uri, Arguments|list]

 [ABORT, Details|dict, Reason|uri, Arguments|list, ArgumentsKw|dict]

3.4.1.4. GOODBYE
Sent by a Peer to close a previously opened WAMP session. Must be echo'ed by the receiving Peer.

 [GOODBYE, Details|dict, Reason|uri]

3.4.1.5. ERROR
Error reply sent by a Peer as an error response to different kinds of requests.

 [ERROR, REQUEST.Type|int, REQUEST.Request|id, Details|dict, Error|uri]

 [ERROR, REQUEST.Type|int, REQUEST.Request|id, Details|dict, Error|uri,
 Arguments|list]

 [ERROR, REQUEST.Type|int, REQUEST.Request|id, Details|dict, Error|uri,
 Arguments|list, ArgumentsKw|dict]

3.4.2. Publish & Subscribe

3.4.2.1. PUBLISH
Sent by a Publisher to a Broker to publish an event.

 [PUBLISH, Request|id, Options|dict, Topic|uri]

 [PUBLISH, Request|id, Options|dict, Topic|uri, Arguments|list]

 [PUBLISH, Request|id, Options|dict, Topic|uri, Arguments|list,
 ArgumentsKw|dict]

3.4.2.2. PUBLISHED
Acknowledge sent by a Broker to a Publisher for acknowledged publications.

 [PUBLISHED, PUBLISH.Request|id, Publication|id]

3.4.2.3. SUBSCRIBE
Subscribe request sent by a Subscriber to a Broker to subscribe to a topic.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 23

 [SUBSCRIBE, Request|id, Options|dict, Topic|uri]

3.4.2.4. SUBSCRIBED
Acknowledge sent by a Broker to a Subscriber to acknowledge a subscription.

 [SUBSCRIBED, SUBSCRIBE.Request|id, Subscription|id]

3.4.2.5. UNSUBSCRIBE
Unsubscribe request sent by a Subscriber to a Broker to unsubscribe a subscription.

 [UNSUBSCRIBE, Request|id, SUBSCRIBED.Subscription|id]

3.4.2.6. UNSUBSCRIBED
Acknowledge sent by a Broker to a Subscriber to acknowledge unsubscription.

 [UNSUBSCRIBED, UNSUBSCRIBE.Request|id]

3.4.2.7. EVENT
Event dispatched by Broker to Subscribers for subscriptions the event was matching.

An event is dispatched to a Subscriber for a given Subscription|id only once. On the other

hand, a Subscriber that holds subscriptions with different Subscription|ids that all match
a given event will receive the event on each matching subscription.

 [EVENT, SUBSCRIBED.Subscription|id, PUBLISHED.Publication|id, Details|dict]

 [EVENT, SUBSCRIBED.Subscription|id, PUBLISHED.Publication|id, Details|dict,
 PUBLISH.Arguments|list]

 [EVENT, SUBSCRIBED.Subscription|id, PUBLISHED.Publication|id, Details|dict,
 PUBLISH.Arguments|list, PUBLISH.ArgumentsKw|dict]

3.4.3. Routed Remote Procedure Calls

3.4.3.1. CALL
Call as originally issued by the Caller to the Dealer.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 24

 [CALL, Request|id, Options|dict, Procedure|uri]

 [CALL, Request|id, Options|dict, Procedure|uri, Arguments|list]

 [CALL, Request|id, Options|dict, Procedure|uri, Arguments|list,
 ArgumentsKw|dict]

3.4.3.2. RESULT
Result of a call as returned by Dealer to Caller.

 [RESULT, CALL.Request|id, Details|dict]

 [RESULT, CALL.Request|id, Details|dict, YIELD.Arguments|list]

 [RESULT, CALL.Request|id, Details|dict, YIELD.Arguments|list,
 YIELD.ArgumentsKw|dict]

3.4.3.3. REGISTER
A Callees request to register an endpoint at a Dealer.

 [REGISTER, Request|id, Options|dict, Procedure|uri]

3.4.3.4. REGISTERED
Acknowledge sent by a Dealer to a Callee for successful registration.

 [REGISTERED, REGISTER.Request|id, Registration|id]

3.4.3.5. UNREGISTER
A Callees request to unregister a previously established registration.

 [UNREGISTER, Request|id, REGISTERED.Registration|id]

3.4.3.6. UNREGISTERED
Acknowledge sent by a Dealer to a Callee for successful unregistration.

 [UNREGISTERED, UNREGISTER.Request|id]

3.4.3.7. INVOCATION
Actual invocation of an endpoint sent by Dealer to a Callee.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 25

 [INVOCATION, Request|id, REGISTERED.Registration|id, Details|dict]

 [INVOCATION, Request|id, REGISTERED.Registration|id, Details|dict,
 CALL.Arguments|list]

 [INVOCATION, Request|id, REGISTERED.Registration|id, Details|dict,
 CALL.Arguments|list, CALL.ArgumentsKw|dict]

3.4.3.8. YIELD
Actual yield from an endpoint sent by a Callee to Dealer.

 [YIELD, INVOCATION.Request|id, Options|dict]

 [YIELD, INVOCATION.Request|id, Options|dict, Arguments|list]

 [YIELD, INVOCATION.Request|id, Options|dict, Arguments|list, ArgumentsKw|dict]

3.5. Message Codes and Direction
The following table lists the message type code for all messages defined in the WAMP basic
profile and their direction between peer roles.

Reserved codes may be used to identify additional message types in future standards documents.

"Tx" indicates the message is sent by the respective role, and "Rx" indicates the message is
received by the respective role.

Code Message Publisher Broker Subscriber Caller Dealer Callee

1 HELLO Tx Rx Tx Tx Rx Tx

2 WELCOME Rx Tx Rx Rx Tx Rx

3 ABORT TxRx TxRx TxRx TxRx TxRx TxRx

6 GOODBYE TxRx TxRx TxRx TxRx TxRx TxRx

8 ERROR Rx Tx Rx Rx TxRx TxRx

16 PUBLISH Tx Rx

17 PUBLISHED Rx Tx

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 26

Code Message Publisher Broker Subscriber Caller Dealer Callee

32 SUBSCRIBE Rx Tx

33 SUBSCRIBED Tx Rx

34 UNSUBSCRIBE Rx Tx

35 UNSUBSCRIBED Tx Rx

36 EVENT Tx Rx

48 CALL Tx Rx

50 RESULT Rx Tx

64 REGISTER Rx Tx

65 REGISTERED Tx Rx

66 UNREGISTER Rx Tx

67 UNREGISTERED Tx Rx

68 INVOCATION Tx Rx

70 YIELD Rx Tx

Table 1

3.6. Extension Messages
WAMP uses type codes from the core range [0, 255]. Implementations MAY define and use
implementation specific messages with message type codes from the extension message range
[256, 1023]. For example, a router MAY implement router-to-router communication by using
extension messages.

3.7. Empty Arguments and Keyword Arguments
Implementations SHOULD avoid sending empty Arguments lists.

E.g. a CALL message

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 27

where Arguments == [] SHOULD be avoided, and instead

SHOULD be sent.

Implementations SHOULD avoid sending empty ArgumentsKw dictionaries.

E.g. a CALL message

where ArgumentsKw == {} SHOULD be avoided, and instead

SHOULD be sent when Arguments is non-empty.

 [CALL, Request|id, Options|dict, Procedure|uri, Arguments|list]

 [CALL, Request|id, Options|dict, Procedure|uri]

 [CALL, Request|id, Options|dict, Procedure|uri, Arguments|list, ArgumentsKw|dict]

 [CALL, Request|id, Options|dict, Procedure|uri, Arguments|list]

4. Sessions
The message flow between Clients and Routers for opening and closing WAMP sessions involves
the following messages:

HELLO

WELCOME

ABORT

GOODBYE

The following state chart gives the states that a WAMP peer can be in during the session lifetime
cycle.

1.

2.

3.

4.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 28

The state transitions are listed in this table:

State

1 Sent HELLO

2 Received WELCOME

3 Sent GOODBYE

4 Received GOODBYE

 +--------------+
+--------(6)-------------> |
| | CLOSED <--------------------------+
| +------(4)-------------> <---+ |
	+--------------+		
	(1) (7)		
	+--------v-----+	(11)	
		+---+	
	+------------+ ESTABLISHING +----------------+		
		+--------------+	
			(10)
		(9)	
	(2) +--------v-----+ +--------v-------+		
		+------> FAILED <--(13)-+ CHALLENGING / +-+	
			+--------------+ +----------------+
		(8)	
	+-------v-------+		
		<-------------------(12)-------------+	
		ESTABLISHED	
		+--------------+	
	+---------------+		
	(3) (5)		
	+-------v-------+ +--------v-----+		
		+--+	
+-+ SHUTTING DOWN			CLOSING
		(14)	
+-------^-------+	+--------------+		
	----------+		
+----------------------------------+

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 29

State

5 Received GOODBYE

6 Sent GOODBYE

7 Received invalid HELLO / Send ABORT

8 Received HELLO or AUTHENTICATE

9 Received other

10 Received valid HELLO [needs authentication] / Send CHALLENGE

11 Received invalid AUTHENTICATE / Send ABORT

12 Received valid AUTHENTICATE / Send WELCOME

13 Received other

14 Received other / ignore

Table 2

4.1. Session Establishment

4.1.1. HELLO

After the underlying transport has been established, the opening of a WAMP session is initiated
by the Client sending a HELLO message to the Router

where

Realm is a string identifying the realm this session should attach to

Details is a dictionary that allows to provide additional opening information (see below).

The HELLO message MUST be the very first message sent by the Client after the transport has
been established.

In the WAMP Basic Profile without session authentication the Router will reply with a WELCOME
or ABORT message.

 [HELLO, Realm|uri, Details|dict]

•

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 30

A WAMP session starts its lifetime when the Router has sent a WELCOME message to the Client,
and ends when the underlying transport closes or when the session is closed explicitly by either
peer sending the GOODBYE message (see below).

It is a protocol error to receive a second HELLO message during the lifetime of the session and the
Peer MUST close the session if that happens.

Client: Role and Feature Announcement

WAMP uses Role & Feature announcement instead of protocol versioning to allow

implementations only supporting subsets of functionality
future extensibility

A Client must announce the roles it supports via Hello.Details.roles|dict, with a key mapping to a

Hello.Details.roles.<role>|dict where <role> can be:

publisher

subscriber

caller

callee

A Client can support any combination of the above roles but must support at least one role.

The <role>|dict is a dictionary describing features supported by the peer for that role.

This MUST be empty for WAMP Basic Profile implementations, and MUST be used by
implementations implementing parts of the Advanced Profile to list the specific set of features
they support.

Example: A Client that implements the Publisher and Subscriber roles of the WAMP Basic Profile.

 ,------. ,------.
 |Client| |Router|
 `--+---' `--+---'
 | HELLO |
 | ---------------->
 | |
 | WELCOME |
 | <----------------
 ,--+---. ,--+---.
 |Client| |Router|
 `------' `------'

•
•

•

•

•

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 31

Client: Agent Identification

When a software agent operates in a network protocol, it often identifies itself, its application
type, operating system, software vendor, or software revision, by submitting a characteristic
identification string to its operating peer.

Similar to what browsers do with the User-Agent HTTP header, both the HELLO and the WELCOME
message MAY disclose the WAMP implementation in use to its peer:

and

Example: A Client "HELLO" message.

Example: A Router "WELCOME" message.

 [1, "somerealm", {
 "roles": {
 "publisher": {},
 "subscriber": {}
 }
 }]

 HELLO.Details.agent|string

 WELCOME.Details.agent|string

 [1, "somerealm", {
 "agent": "AutobahnJS-0.9.14",
 "roles": {
 "subscriber": {},
 "publisher": {}
 }
 }]

 [2, 9129137332, {
 "agent": "Crossbar.io-0.10.11",
 "roles": {
 "broker": {}
 }
 }]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 32

4.1.2. WELCOME

A Router completes the opening of a WAMP session by sending a WELCOME reply message to the
Client.

where

Session MUST be a randomly generated ID specific to the WAMP session. This applies for the
lifetime of the session.
Details is a dictionary that allows to provide additional information regarding the open
session (see below).

In the WAMP Basic Profile without session authentication, a WELCOME message MUST be the first

message sent by the Router, directly in response to a HELLO message received from the Client.
Extensions in the Advanced Profile MAY include intermediate steps and messages for
authentication.

Note. The behavior if a requested Realm does not presently exist is router-specific. A
router may e.g. automatically create the realm, or deny the establishment of the session
with a ABORT reply message.

Router: Role and Feature Announcement

Similar to a Client announcing Roles and Features supported in the HELLO message, a Router

announces its supported Roles and Features in the WELCOME message.

A Router MUST announce the roles it supports via Welcome.Details.roles|dict, with a key mapping

to a Welcome.Details.roles.<role>|dict where <role> can be:

broker

dealer

A Router must support at least one role, and MAY support both roles.

The <role>|dict is a dictionary describing features supported by the peer for that role. With
WAMP Basic Profile implementations, this MUST be empty, but MUST be used by
implementations implementing parts of the Advanced Profile to list the specific set of features
they support

 [WELCOME, Session|id, Details|dict]

•

•

•

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 33

Example: A Router implementing the Broker role of the WAMP Basic Profile.

 [2, 9129137332, {
 "roles": {
 "broker": {}
 }
 }]

4.1.3. ABORT

Both the Router and the Client may abort a WAMP session by sending an ABORT message.

where

Reason MUST be a URI.

Details MUST be a dictionary that allows to provide additional, optional closing information
(see below).

No response to an ABORT message is expected.

There are few scenarios, when ABORT is used:

During session opening, if peer decided to abort connect.

Example

 [ABORT, Details|dict, Reason|uri]

 [ABORT, Details|dict, Reason|uri, Arguments|list]

 [ABORT, Details|dict, Reason|uri, Arguments|list, ArgumentsKw|dict]

•

•

•

 ,------. ,------.
 |Client| |Router|
 `--+---' `--+---'
 | HELLO |
 | ---------------->
 | |
 | ABORT |
 | <----------------
 ,--+---. ,--+---.
 |Client| |Router|
 `------' `------'

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 34

After session is opened, when protocol violation happens (see "Protocol errors" section).

Examples

Router received second HELLO message.

Client peer received second WELCOME message

 [3, {"message": "The realm does not exist."},
 "wamp.error.no_such_realm"]

•

•

 [3, {"message":
 "Received HELLO message after session was established."},
 "wamp.error.protocol_violation"]

•

 [3, {"message":
 "Received WELCOME message after session was established."},
 "wamp.error.protocol_violation"]

4.2. Session Closing

4.2.1. GOODBYE

A WAMP session starts its lifetime with the Router sending a WELCOME message to the Client and
ends when the underlying transport disappears or when the WAMP session is closed explicitly by
a GOODBYE message sent by one Peer and a GOODBYE message sent from the other Peer in
response.

where

Reason MUST be a URI.

Details MUST be a dictionary that allows to provide additional, optional closing information
(see below).

 [GOODBYE, Details|dict, Reason|uri]

•

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 35

Example. One Peer initiates closing

and the other peer replies

Example. One Peer initiates closing

and the other peer replies

Difference between ABORT and GOODBYE

 ,------. ,------.
 |Client| |Router|
 `--+---' `--+---'
 | GOODBYE |
 | ---------------->
 | |
 | GOODBYE |
 | <----------------
 ,--+---. ,--+---.
 |Client| |Router|
 `------' `------'

 ,------. ,------.
 |Client| |Router|
 `--+---' `--+---'
 | GOODBYE |
 | <----------------
 | |
 | GOODBYE |
 | ---------------->
 ,--+---. ,--+---.
 |Client| |Router|
 `------' `------'

 [6, {"message": "The host is shutting down now."},
 "wamp.close.system_shutdown"]

 [6, {}, "wamp.close.goodbye_and_out"]

 [6, {}, "wamp.close.close_realm"]

 [6, {}, "wamp.close.goodbye_and_out"]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 36

The differences between ABORT and GOODBYE messages is that ABORT is never replied to by a

Peer, whereas GOODBYE must be replied to by the receiving Peer.

Though ABORT and GOODBYE are structurally identical, using different message types
serves to reduce overloaded meaning of messages and simplify message handling code.

5. Publish and Subscribe
All of the following features for Publish & Subscribe are mandatory for WAMP Basic Profile
implementations supporting the respective roles, i.e. Publisher, Subscriber and Broker.

5.1. Subscribing and Unsubscribing
The message flow between Clients implementing the role of Subscriber and Routers
implementing the role of Broker for subscribing and unsubscribing involves the following
messages:

SUBSCRIBE

SUBSCRIBED

UNSUBSCRIBE

UNSUBSCRIBED

ERROR

1.

2.

3.

4.

5.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 37

A Subscriber may subscribe to zero, one or more topics, and a Publisher publishes to topics
without knowledge of subscribers.

Upon subscribing to a topic via the SUBSCRIBE message, a Subscriber will receive any future
events published to the respective topic by Publishers, and will receive those events
asynchronously.

A subscription lasts for the duration of a session, unless a Subscriber opts out from a previously
established subscription via the UNSUBSCRIBE message.

A Subscriber may have more than one event handler attached to the same subscription.
This can be implemented in different ways: a) a Subscriber can recognize itself that it is
already subscribed and just attach another handler to the subscription for incoming
events, b) or it can send a new SUBSCRIBE message to broker (as it would be first) and

upon receiving a SUBSCRIBED.Subscription|id it already knows about, attach the handler
to the existing subscription

 ,---------. ,------. ,----------.
 |Publisher| |Broker| |Subscriber|
 `----+----' `--+---' `----+-----'
 | | |
 | | |
 | | SUBSCRIBE |
 | | <---------------------
 | | |
 | | SUBSCRIBED or ERROR |
 | | --------------------->
 | | |
 | | |
 | | |
 | | |
 | | UNSUBSCRIBE |
 | | <---------------------
 | | |
 | | UNSUBSCRIBED or ERROR|
 | | --------------------->
 ,----+----. ,--+---. ,----+-----.
 |Publisher| |Broker| |Subscriber|
 `---------' `------' `----------'

5.1.1. SUBSCRIBE

A Subscriber communicates its interest in a topic to a Broker by sending a SUBSCRIBE message:

 [SUBSCRIBE, Request|id, Options|dict, Topic|uri]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 38

where

Request is a sequential ID in the session scope, incremented by the Subscriber and used to
correlate the Broker's response with the request.
Options is a dictionary that allows to provide additional subscription request details in a
extensible way. This is described further below.
Topic is the topic the Subscriber wants to subscribe to and is a URI.

Example

A Broker, receiving a SUBSCRIBE message, can fullfill or reject the subscription, so it answers with

SUBSCRIBED or ERROR messages.

•

•

•

 [32, 713845233, {}, "com.myapp.mytopic1"]

5.1.2. SUBSCRIBED

If the Broker is able to fulfill and allow the subscription, it answers by sending a SUBSCRIBED
message to the Subscriber

where

SUBSCRIBE.Request is the ID from the original subscription request.

Subscription is an ID chosen by the Broker for the subscription.

Example

Note. The Subscription ID chosen by the broker need not be unique to the subscription of

a single Subscriber, but may be assigned to the Topic, or the combination of the Topic and

some or all Options, such as the topic pattern matching method to be used. Then this ID

may be sent to all Subscribers for the Topic or Topic / Options combination. This allows
the Broker to serialize an event to be delivered only once for all actual receivers of the
event.

 [SUBSCRIBED, SUBSCRIBE.Request|id, Subscription|id]

•

•

 [33, 713845233, 5512315355]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 39

In case of receiving a SUBSCRIBE message from the same Subscriber and to already

subscribed topic, Broker should answer with SUBSCRIBED message, containing the

existing Subscription|id.

5.1.3. Subscribe ERROR

When the request for subscription cannot be fulfilled by the Broker, the Broker sends back an
ERROR message to the Subscriber

where

SUBSCRIBE.Request is the ID from the original request.

Error is a URI that gives the error of why the request could not be fulfilled.

Example

 [ERROR, SUBSCRIBE, SUBSCRIBE.Request|id, Details|dict, Error|uri]

•

•

 [8, 32, 713845233, {}, "wamp.error.not_authorized"]

5.1.4. UNSUBSCRIBE

When a Subscriber is no longer interested in receiving events for a subscription it sends an
UNSUBSCRIBE message

where

Request is a sequential ID in the session scope, incremented by the Subscriber and used to
correlate the Broker's response with the request.
SUBSCRIBED.Subscription is the ID for the subscription to unsubscribe from, originally handed
out by the Broker to the Subscriber.

Example

 [UNSUBSCRIBE, Request|id, SUBSCRIBED.Subscription|id]

•

•

 [34, 85346237, 5512315355]

5.1.5. UNSUBSCRIBED

Upon successful unsubscription, the Broker sends an UNSUBSCRIBED message to the Subscriber

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 40

where

UNSUBSCRIBE.Request is the ID from the original request.

Example

 [UNSUBSCRIBED, UNSUBSCRIBE.Request|id]

•

 [35, 85346237]

5.1.6. Unsubscribe ERROR

When the request fails, the Broker sends an ERROR

where

UNSUBSCRIBE.Request is the ID from the original request.

Error is a URI that gives the error of why the request could not be fulfilled.

Example

 [ERROR, UNSUBSCRIBE, UNSUBSCRIBE.Request|id, Details|dict, Error|uri]

•

•

 [8, 34, 85346237, {}, "wamp.error.no_such_subscription"]

5.2. Publishing and Events
The message flow between Publishers, a Broker and Subscribers for publishing to topics and
dispatching events involves the following messages:

PUBLISH

PUBLISHED

EVENT

ERROR

1.

2.

3.

4.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 41

 ,---------. ,------. ,----------.
 |Publisher| |Broker| |Subscriber|
 `----+----' `--+---' `----+-----'
 | PUBLISH | |
 |------------------> |
 | | |
 |PUBLISHED or ERROR| |
 |<------------------ |
 | | |
 | | EVENT |
 | | ------------------>
 ,----+----. ,--+---. ,----+-----.
 |Publisher| |Broker| |Subscriber|
 `---------' `------' `----------'

5.2.1. PUBLISH

When a Publisher requests to publish an event to some topic, it sends a PUBLISH message to a
Broker:

or

or

where

Request is a sequential ID in the session scope, incremented by the Publisher and used to
correlate the Broker's response with the request.
Options is a dictionary that allows to provide additional publication request details in an
extensible way. This is described further below.
Topic is the topic published to.

Arguments is a list of application-level event payload elements. The list may be of zero length.

ArgumentsKw is an optional dictionary containing application-level event payload, provided
as keyword arguments. The dictionary may be empty.

 [PUBLISH, Request|id, Options|dict, Topic|uri]

 [PUBLISH, Request|id, Options|dict, Topic|uri, Arguments|list]

 [PUBLISH, Request|id, Options|dict, Topic|uri, Arguments|list,
 ArgumentsKw|dict]

•

•

•

•

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 42

If the Broker allows and is able to fulfill the publication, the Broker will send the event to all
current Subscribers of the topic of the published event.

By default, publications are unacknowledged, and the Broker will not respond, whether the
publication was successful indeed or not. This behavior can be changed with the option
PUBLISH.Options.acknowledge|bool (see below).

Example

Example

Example

 [16, 239714735, {}, "com.myapp.mytopic1"]

 [16, 239714735, {}, "com.myapp.mytopic1", ["Hello, world!"]]

 [16, 239714735, {}, "com.myapp.mytopic1", [], {"color": "orange",
 "sizes": [23, 42, 7]}]

5.2.2. PUBLISHED

If the Broker is able to fulfill and allowing the publication, and PUBLISH.Options.acknowledge ==
true, the Broker replies by sending a PUBLISHED message to the Publisher:

where

PUBLISH.Request is the ID from the original publication request.

Publication is an ID chosen by the Broker for the publication.

Example

 [PUBLISHED, PUBLISH.Request|id, Publication|id]

•

•

 [17, 239714735, 4429313566]

5.2.3. Publish ERROR

When the request for publication cannot be fulfilled by the Broker, and
PUBLISH.Options.acknowledge == true, the Broker sends back an ERROR message to the Publisher

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 43

where

PUBLISH.Request is the ID from the original publication request.

Error is a URI that gives the error of why the request could not be fulfilled.

Example

 [ERROR, PUBLISH, PUBLISH.Request|id, Details|dict, Error|uri]

•

•

 [8, 16, 239714735, {}, "wamp.error.not_authorized"]

5.2.4. EVENT

When a publication is successful and a Broker dispatches the event, it determines a list of
receivers for the event based on Subscribers for the topic published to and, possibly, other
information in the event.

Note that the Publisher of an event will never receive the published event even if the Publisher is
also a Subscriber of the topic published to.

The Advanced Profile provides options for more detailed control over publication.

When a Subscriber is deemed to be a receiver, the Broker sends the Subscriber an EVENT
message:

or

or

where

SUBSCRIBED.Subscription is the ID for the subscription under which the Subscriber receives
the event - the ID for the subscription originally handed out by the Broker to the Subscribe.

 [EVENT, SUBSCRIBED.Subscription|id, PUBLISHED.Publication|id, Details|dict]

 [EVENT, SUBSCRIBED.Subscription|id, PUBLISHED.Publication|id, Details|dict,
 PUBLISH.Arguments|list]

 [EVENT, SUBSCRIBED.Subscription|id, PUBLISHED.Publication|id, Details|dict,
 PUBLISH.Arguments|list, PUBLISH.ArgumentsKw|dict]

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 44

PUBLISHED.Publication is the ID of the publication of the published event.

Details is a dictionary that allows the Broker to provide additional event details in a
extensible way. This is described further below.
PUBLISH.Arguments is the application-level event payload that was provided with the original
publication request.
PUBLISH.ArgumentsKw is the application-level event payload that was provided with the
original publication request.

Example

Example

Example

•

•

•

•

 [36, 5512315355, 4429313566, {}]

 [36, 5512315355, 4429313566, {}, ["Hello, world!"]]

 [36, 5512315355, 4429313566, {}, [], {"color": "orange", "sizes": [23,
42, 7]}]

6. Remote Procedure Calls
All of the following features for Remote Procedure Calls are mandatory for WAMP Basic Profile
implementations supporting the respective roles.

6.1. Registering and Unregistering
The message flow between Callees and a Dealer for registering and unregistering endpoints to be
called over RPC involves the following messages:

REGISTER

REGISTERED

UNREGISTER

UNREGISTERED

ERROR

1.

2.

3.

4.

5.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 45

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | | |
 | | |
 | | REGISTER |
 | | <---------------------
 | | |
 | | REGISTERED or ERROR |
 | | --------------------->
 | | |
 | | |
 | | |
 | | |
 | | |
 | | UNREGISTER |
 | | <---------------------
 | | |
 | | UNREGISTERED or ERROR|
 | | --------------------->
 ,--+---. ,--+---. ,--+---.
 |Caller| |Dealer| |Callee|
 `------' `------' `------'

6.1.1. REGISTER

A Callee announces the availability of an endpoint implementing a procedure with a Dealer by
sending a REGISTER message:

where

Request is a sequential ID in the session scope, incremented by the Callee and used to
correlate the Dealer's response with the request.
Options is a dictionary that allows to provide additional registration request details in a
extensible way. This is described further below.
Procedure is the procedure the Callee wants to register

Example

 [REGISTER, Request|id, Options|dict, Procedure|uri]

•

•

•

 [64, 25349185, {}, "com.myapp.myprocedure1"]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 46

6.1.2. REGISTERED

If the Dealer is able to fulfill and allowing the registration, it answers by sending a REGISTERED
message to the Callee:

where

REGISTER.Request is the ID from the original request.

Registration is an ID chosen by the Dealer for the registration.

Example

 [REGISTERED, REGISTER.Request|id, Registration|id]

•

•

 [65, 25349185, 2103333224]

6.1.3. Register ERROR

When the request for registration cannot be fulfilled by the Dealer, the Dealer sends back an
ERROR message to the Callee:

where

REGISTER.Request is the ID from the original request.

Error is a URI that gives the error of why the request could not be fulfilled.

Example

 [ERROR, REGISTER, REGISTER.Request|id, Details|dict, Error|uri]

•

•

 [8, 64, 25349185, {}, "wamp.error.procedure_already_exists"]

6.1.4. UNREGISTER

When a Callee is no longer willing to provide an implementation of the registered procedure, it
sends an UNREGISTER message to the Dealer:

 [UNREGISTER, Request|id, REGISTERED.Registration|id]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 47

where

Request is a sequential ID in the session scope, incremented by the Callee and used to
correlate the Dealer's response with the request.
REGISTERED.Registration is the ID for the registration to revoke, originally handed out by the
Dealer to the Callee.

Example

•

•

 [66, 788923562, 2103333224]

6.1.5. UNREGISTERED

Upon successful unregistration, the Dealer sends an UNREGISTERED message to the Callee:

where

UNREGISTER.Request is the ID from the original request.

Example

 [UNREGISTERED, UNREGISTER.Request|id]

•

 [67, 788923562]

6.1.6. Unregister ERROR

When the unregistration request fails, the Dealer sends an ERROR message:

where

UNREGISTER.Request is the ID from the original request.

Error is a URI that gives the error of why the request could not be fulfilled.

Example

 [ERROR, UNREGISTER, UNREGISTER.Request|id, Details|dict, Error|uri]

•

•

 [8, 66, 788923562, {}, "wamp.error.no_such_registration"]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 48

6.2. Calling and Invocations
The message flow between Callers, a Dealer and Callees for calling procedures and invoking
endpoints involves the following messages:

CALL

RESULT

INVOCATION

YIELD

ERROR

The execution of remote procedure calls is asynchronous, and there may be more than one call
outstanding. A call is called outstanding (from the point of view of the Caller), when a (final)
result or error has not yet been received by the Caller.

1.

2.

3.

4.

5.

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL | |
 | ----------------> |
 | | |
 | | INVOCATION |
 | | ---------------->
 | | |
 | | YIELD or ERROR |
 | | <----------------
 | | |
 | RESULT or ERROR | |
 | <---------------- |
 ,--+---. ,--+---. ,--+---.
 |Caller| |Dealer| |Callee|
 `------' `------' `------'

6.2.1. CALL

When a Caller wishes to call a remote procedure, it sends a CALL message to a Dealer:

or

 [CALL, Request|id, Options|dict, Procedure|uri]

 [CALL, Request|id, Options|dict, Procedure|uri, Arguments|list]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 49

or

where

Request is a sequential ID in the session scope, incremented by the Caller and used to
correlate the Dealer's response with the request.
Options is a dictionary that allows to provide additional call request details in an extensible
way. This is described further below.
Procedure is the URI of the procedure to be called.

Arguments is a list of positional call arguments (each of arbitrary type). The list may be of
zero length.
ArgumentsKw is a dictionary of keyword call arguments (each of arbitrary type). The
dictionary may be empty.

Example

Example

Example

Example

 [CALL, Request|id, Options|dict, Procedure|uri, Arguments|list,
 ArgumentsKw|dict]

•

•

•

•

•

 [48, 7814135, {}, "com.myapp.ping"]

 [48, 7814135, {}, "com.myapp.echo", ["Hello, world!"]]

 [48, 7814135, {}, "com.myapp.add2", [23, 7]]

 [48, 7814135, {}, "com.myapp.user.new", ["johnny"],
 {"firstname": "John", "surname": "Doe"}]

6.2.2. INVOCATION

If the Dealer is able to fulfill (mediate) the call and it allows the call, it sends a INVOCATION
message to the respective Callee implementing the procedure:

 [INVOCATION, Request|id, REGISTERED.Registration|id, Details|dict]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 50

or

or

where

Request is a sequential ID in the session scope, incremented by the Dealer and used to
correlate the Callee's response with the request.
REGISTERED.Registration is the registration ID under which the procedure was registered at
the Dealer.
Details is a dictionary that allows to provide additional invocation request details in an
extensible way. This is described further below.
CALL.Arguments is the original list of positional call arguments as provided by the Caller.

CALL.ArgumentsKw is the original dictionary of keyword call arguments as provided by the
Caller.

Example

Example

Example

Example

 [INVOCATION, Request|id, REGISTERED.Registration|id, Details|dict,
 CALL.Arguments|list]

 [INVOCATION, Request|id, REGISTERED.Registration|id, Details|dict,
 CALL.Arguments|list, CALL.ArgumentsKw|dict]

•

•

•

•

•

 [68, 6131533, 9823526, {}]

 [68, 6131533, 9823527, {}, ["Hello, world!"]]

 [68, 6131533, 9823528, {}, [23, 7]]

 [68, 6131533, 9823529, {}, ["johnny"], {"firstname": "John", "surname": "Doe"}]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 51

6.2.3. YIELD

If the Callee is able to successfully process and finish the execution of the call, it answers by
sending a YIELD message to the Dealer:

or

or

where

INVOCATION.Request is the ID from the original invocation request.

Optionsis a dictionary that allows to provide additional options.

Arguments is a list of positional result elements (each of arbitrary type). The list may be of
zero length.
ArgumentsKw is a dictionary of keyword result elements (each of arbitrary type). The
dictionary may be empty.

Example

Example

Example

Example

 [YIELD, INVOCATION.Request|id, Options|dict]

 [YIELD, INVOCATION.Request|id, Options|dict, Arguments|list]

 [YIELD, INVOCATION.Request|id, Options|dict, Arguments|list, ArgumentsKw|dict]

•

•

•

•

 [70, 6131533, {}]

 [70, 6131533, {}, ["Hello, world!"]]

 [70, 6131533, {}, [30]]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 52

 [70, 6131533, {}, [], {"userid": 123, "karma": 10}]

6.2.4. RESULT

The Dealer will then send a RESULT message to the original Caller:

or

or

where

CALL.Request is the ID from the original call request.

Details is a dictionary of additional details.

YIELD.Arguments is the original list of positional result elements as returned by the Callee.

YIELD.ArgumentsKw is the original dictionary of keyword result elements as returned by the
Callee.

Example

Example

Example

Example

 [RESULT, CALL.Request|id, Details|dict]

 [RESULT, CALL.Request|id, Details|dict, YIELD.Arguments|list]

 [RESULT, CALL.Request|id, Details|dict, YIELD.Arguments|list,
 YIELD.ArgumentsKw|dict]

•

•

•

•

 [50, 7814135, {}]

 [50, 7814135, {}, ["Hello, world!"]]

 [50, 7814135, {}, [30]]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 53

 [50, 7814135, {}, [], {"userid": 123, "karma": 10}]

6.2.5. Invocation ERROR

If the Callee is unable to process or finish the execution of the call, or the application code
implementing the procedure raises an exception or otherwise runs into an error, the Callee sends
an ERROR message to the Dealer:

or

or

where

INVOCATION.Request is the ID from the original INVOCATION request previously sent by the
Dealer to the Callee.
Details is a dictionary with additional error details.

Error is a URI that identifies the error of why the request could not be fulfilled.

Arguments is a list containing arbitrary, application defined, positional error information.
This will be forwarded by the Dealer to the Caller that initiated the call.
ArgumentsKw is a dictionary containing arbitrary, application defined, keyword-based error
information. This will be forwarded by the Dealer to the Caller that initiated the call.

Example

 [ERROR, INVOCATION, INVOCATION.Request|id, Details|dict, Error|uri]

 [ERROR, INVOCATION, INVOCATION.Request|id, Details|dict, Error|uri, Arguments|list]

 [ERROR, INVOCATION, INVOCATION.Request|id, Details|dict, Error|uri, Arguments|list,
 ArgumentsKw|dict]

•

•

•

•

•

 [8, 68, 6131533, {}, "com.myapp.error.object_write_protected",
 ["Object is write protected."], {"severity": 3}]

6.2.6. Call ERROR

The Dealer will then send a ERROR message to the original Caller:

 [ERROR, CALL, CALL.Request|id, Details|dict, Error|uri]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 54

or

or

where

CALL.Request is the ID from the original CALL request sent by the Caller to the Dealer.

Details is a dictionary with additional error details.

Error is a URI identifying the type of error as returned by the Callee to the Dealer.

Arguments is a list containing the original error payload list as returned by the Callee to the
Dealer.
ArgumentsKw is a dictionary containing the original error payload dictionary as returned by
the Callee to the Dealer

Example

If the original call already failed at the Dealer before the call would have been forwarded to any
Callee, the Dealer will send an ERROR message to the Caller:

Example

 [ERROR, CALL, CALL.Request|id, Details|dict, Error|uri, Arguments|list]

 [ERROR, CALL, CALL.Request|id, Details|dict, Error|uri, Arguments|list,
 ArgumentsKw|dict]

•

•

•

•

•

 [8, 48, 7814135, {}, "com.myapp.error.object_write_protected",
 ["Object is write protected."], {"severity": 3}]

 [ERROR, CALL, CALL.Request|id, Details|dict, Error|uri]

 [8, 48, 7814135, {}, "wamp.error.no_such_procedure"]

6.3. Caller Leaving During an RPC Invocation
If, after the Dealer sends an INVOCATION but before it receives a YIELD or ERROR response, the
Dealer detects the original Caller leaving or disconnecting, then the Dealer shall send an
INTERRUPT to the Callee if both the Dealer and Callee support the Call Canceling advanced
feature. That INTERRUPT message MUST have Options.mode set to "killnowait" to indicate to the
Callee that no response should be sent for the INTERRUPT.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 55

If either the Dealer or the Callee does not support the Call Canceling feature, then an INTERRUPT
message shall NOT sent in this scenario. Whether or not call canceling is supported, the Dealer
shall be prepared to discard a YIELD or ERROR response associated with that defunct call
request.

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL | |
 | ----------------> |
 | | INVOCATION |
 | | ---------------->
 ,--+---. | |
 |Caller| | |
 `------' | |
 (gone) | |
 | INTERRUPT |
 | ---------------->
 | |
 ,--+---. ,--+---.
 |Dealer| |Callee|
 `------' `------'

6.4. Callee Leaving During an RPC Invocation
After sending an INVOCATION message, if a Dealer detects that the Callee has left/disconnected
without sending a final YIELD or ERROR response, then the Dealer SHALL return an ERROR
message back to the Caller with a wamp.error.cancelled URI. The Dealer MAY provide additional
information via the ERROR payload arguments to clarify that the cancellation is due to the Callee
leaving before the call could be completed.

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL | |
 | ----------------> |
 | | INVOCATION |
 | | ---------------->
 | | |
 | | ,--+---.
 | | |Callee|
 | | `------'
 | ERROR | (gone)
 |<--------------- |
 | |
 ,--+---. ,--+---.
 |Caller| |Dealer|
 `------' `------'

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 56

7. Security Model
The following discusses the security model for the Basic Profile. Any changes or extensions to this
for the Advanced Profile are discussed further on as part of the Advanced Profile definition.

All WAMP implementations, in particular Routers MUST support the following ordering
guarantees.

A WAMP Advanced Profile may provide applications options to relax ordering guarantees, in
particular with distributed calls.

7.1. Ordering Guarantees
Publish & Subscribe Ordering

Regarding Publish & Subscribe, the ordering guarantees are as follows:

If Subscriber A is subscribed to both Topic 1 and Topic 2, and Publisher B first publishes an
Event 1 to Topic 1 and then an Event 2 to Topic 2, then Subscriber A will first receive Event 1
and then Event 2. This also holds if Topic 1 and Topic 2 are identical.

In other words, WAMP guarantees ordering of events between any given pair of Publisher and
Subscriber.

Further, if Subscriber A subscribes to Topic 1, the SUBSCRIBED message will be sent by the Broker

to Subscriber A before any EVENT message for Topic 1.

There is no guarantee regarding the order of return for multiple subsequent subscribe requests.
A subscribe request might require the Broker to do a time-consuming lookup in some database,
whereas another subscribe request second might be permissible immediately.

Remote Procedure Call Ordering

Regarding Remote Procedure Calls, the ordering guarantees are as follows:

If Callee A has registered endpoints for both Procedure 1 and Procedure 2, and Caller B first
issues a Call 1 to Procedure 1 and then a Call 2 to Procedure 2, and both calls are routed to
Callee A, then Callee A will first receive an invocation corresponding to Call 1 and then Call 2.
This also holds if Procedure 1 and Procedure 2 are identical.

In other words, WAMP guarantees ordering of invocations between any given pair of Caller and
Callee.

There are no guarantees on the order of call results and errors in relation to different calls, since
the execution of calls upon different invocations of endpoints in Callees are running
independently. A first call might require an expensive, long-running computation, whereas a
second, subsequent call might finish immediately.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 57

Further, if Callee A registers for Procedure 1, the REGISTERED message will be sent by Dealer to

Callee A before any INVOCATION message for Procedure 1.

There is no guarantee regarding the order of return for multiple subsequent register requests. A
register request might require the Broker to do a time-consuming lookup in some database,
whereas another register request second might be permissible immediately.

7.2. Transport Encryption and Integrity
WAMP transports may provide (optional) transport-level encryption and integrity verification. If
so, encryption and integrity is point-to-point: between a Client and the Router it is connected to.

Transport-level encryption and integrity is solely at the transport-level and transparent to WAMP.
WAMP itself deliberately does not specify any kind of transport-level encryption.

Implementations that offer TCP based transport such as WAMP-over-WebSocket or WAMP-over-
RawSocket SHOULD implement Transport Layer Security (TLS).

WAMP deployments are encouraged to stick to a TLS-only policy with the TLS code and setup
being hardened.

Further, when a Client connects to a Router over a local-only transport such as Unix domain
sockets, the integrity of the data transmitted is implicit (the OS kernel is trusted), and the privacy
of the data transmitted can be assured using file system permissions (no one can tap a Unix
domain socket without appropriate permissions or being root).

7.3. Router Authentication
To authenticate Routers to Clients, deployments MUST run TLS and Clients MUST verify the
Router server certificate presented. WAMP itself does not provide mechanisms to authenticate a
Router (only a Client).

The verification of the Router server certificate can happen

against a certificate trust database that comes with the Clients operating system
against an issuing certificate/key hard-wired into the Client
by using new mechanisms like DNS-based Authentication of Named Enitities (DNSSEC)/TLSA

Further, when a Client connects to a Router over a local-only transport such as Unix domain
sockets, the file system permissions can be used to create implicit trust. E.g. if only the OS user
under which the Router runs has the permission to create a Unix domain socket under a specific
path, Clients connecting to that path can trust in the router authenticity.

1.
2.
3.

7.4. Client Authentication
Authentication of a Client to a Router at the WAMP level is not part of the basic profile.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 58

When running over TLS, a Router MAY authenticate a Client at the transport level by doing a
client certificate based authentication.

7.5. Routers are trusted
Routers are trusted by Clients. In particular, Routers can read (and modify) any application
payload transmitted in events, calls, call results and call errors (the Arguments or ArgumentsKw
message fields).

Hence, Routers do not provide confidentiality with respect to application payload, and also do
not provide authenticity or integrity of application payloads that could be verified by a receiving
Client.

Routers need to read the application payloads in cases of automatic conversion between
different serialization formats.

Further, Routers are trusted to actually perform routing as specified. E.g. a Client that publishes
an event has to trust a Router that the event is actually dispatched to all (eligible) Subscribers by
the Router.

A rogue Router might deny normal routing operation without a Client taking notice.

8. Basic Profile URIs
WAMP pre-defines the following error URIs for the Basic Profile. WAMP peers SHOULD only use
the defined error messages.

Incorrect URIs

When a Peer provides an incorrect URI for any URI-based attribute of a WAMP message (e.g.
realm, topic), then the other Peer MUST respond with an ERROR message and give the following
Error URI:

Interaction

Peer provided an incorrect URI for any URI-based attribute of WAMP message, such as realm,
topic or procedure

A Dealer could not perform a call, since no procedure is currently registered under the given
URI.

 wamp.error.invalid_uri

 wamp.error.invalid_uri

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 59

A procedure could not be registered, since a procedure with the given URI is already registered.

A Dealer could not perform an unregister, since the given registration is not active.

A Broker could not perform an unsubscribe, since the given subscription is not active.

A call failed since the given argument types or values are not acceptable to the called procedure.
In this case the Callee may throw this error. Alternatively a Router may throw this error if it
performed payload validation of a call, call result, call error or publish, and the payload did not
conform to the requirements.

A Dealer or Callee canceled a call previously issued

A message could not be delivered due to transport payload size limits.

Session Close

The Peer is shutting down completely - used as a GOODBYE (or ABORT) reason.

The Peer want to leave the realm - used as a GOODBYE reason.

 wamp.error.no_such_procedure

 wamp.error.procedure_already_exists

 wamp.error.no_such_registration

 wamp.error.no_such_subscription

 wamp.error.invalid_argument

 wamp.error.canceled

 wamp.error.payload_size_exceeded

 wamp.close.system_shutdown

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 60

A Peer acknowledges ending of a session - used as a GOODBYE reply reason.

A Peer received invalid WAMP protocol message (e.g. HELLO message after session was already

established) - used as a ABORT reply reason. More detailed information may be provided by using

the Arguments|list or ArgumentsKw|dict.

Authorization

A join, call, register, publish or subscribe failed, since the Peer is not authorized to perform the
operation.

A Dealer or Broker could not determine if the Peer is authorized to perform a join, call, register,
publish or subscribe, since the authorization operation itself failed. E.g. a custom authorizer did
run into an error.

Peer wanted to join a non-existing realm (and the Router did not allow to auto-create the realm).

A Peer was to be authenticated under a Role that does not (or no longer) exists on the Router. For
example, the Peer was successfully authenticated, but the Role configured does not exists - hence
there is some misconfiguration in the Router.

 wamp.close.close_realm

 wamp.close.goodbye_and_out

 wamp.error.protocol_violation

 wamp.error.not_authorized

 wamp.error.authorization_failed

 wamp.error.no_such_realm

 wamp.error.no_such_role

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 61

9. WAMP Advanced Profile
While all implementations MUST implement the subset of the Basic Profile necessary for the
particular set of WAMP roles they provide, they MAY implement any subset of features from the
Advanced Profile. Implementers SHOULD implement the maximum of features possible
considering the aims of an implementation.

Note: Features listed here may be experimental or underspecced and yet
unimplemented in any implementation. This part of the specification is very much a
work in progress. An approximate status of each feature is given at the beginning of the
feature section.

9.1. Feature Announcement
Support for advanced features must be announced by the peers which implement them. The
following is a complete list of advanced features currently defined or proposed.

Advanced RPC Features

Feature Status Caller Dealer Callee

Progressive Call Results stable X X X

Progressive Call Invocations alpha X X X

Call Timeout alpha X X X

Call Canceling alpha X X X

Caller Identification stable X X X

Call Trustlevels alpha X X

Registration Meta API beta X

Pattern-based Registration stable X X

Shared Registration beta X X

Sharded Registration alpha X X

Registration Revocation alpha X X

(Interface) Procedure Reflection sketch X

Table 3

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 62

Advanced PubSub Features

Feature Status Publisher Broker Subscriber

Subscriber Blackwhite Listing stable X X

Publisher Exclusion stable X X

Publisher Identification stable X X X

Publication Trustlevels alpha X X

Subscription Meta API beta X

Pattern-based Subscription stable X X

Sharded Subscription alpha X X

Event History beta X

(Interface) Topic Reflection sketch X

Table 4

Other Advanced Features

Feature Status

Challenge-response Authentication stable

Ticket authentication beta

Cryptosign authentication beta

RawSocket transport stable

Batched WebSocket transport sketch

HTTP Longpoll transport beta

Session Meta API beta

Call Rerouting sketch

Payload Passthru Mode sketch

Table 5

The status of the respective AP feature is marked as follows:

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 63

Status Description

sketch There is a rough description of an itch to scratch, but the feature use case isn't clear,
and there is no protocol proposal at all.

alpha The feature use case is still fuzzy and/or the feature definition is unclear, but there
is at least a protocol level proposal.

beta The feature use case is clearly defined and the feature definition in the spec is
sufficient to write a prototype implementation. The feature definition and details
may still be incomplete and change.

stable The feature definition in the spec is complete and stable and the feature use case is
field proven in real applications. There are multiple, interoperable
implementations.

Table 6

9.2. Additional Messages
The Advanced Profile defines additional WAMP-level messages which are explained in detail in
separate sections. The following 4 additional message types MAY be used in the Advanced Profile
and their direction between peer roles. Here, "Tx" ("Rx") means the message is sent (received) by
a peer of the respective role.

Code Message Publisher Broker Subscriber Caller Dealer Callee

4 CHALLENGE Rx Tx Rx Rx Tx Rx

5 AUTHENTICATE Tx Rx Tx Tx Rx Tx

49 CANCEL Tx Rx

69 INTERRUPT Tx Rx

Table 7

9.2.1. CHALLENGE

The CHALLENGE message is used with certain Authentication Methods. During authenticated
session establishment, a Router sends a challenge message.

 [CHALLENGE, AuthMethod|string, Extra|dict]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 64

9.2.2. AUTHENTICATE

The AUTHENTICATE message is used with certain Authentication Methods. A Client having
received a challenge is expected to respond by sending a signature or token.

 [AUTHENTICATE, Signature|string, Extra|dict]

9.2.3. CANCEL

The CANCEL message is used with the Call Canceling advanced feature. A Caller can cancel an
issued call actively by sending a cancel message to the Dealer.

 [CANCEL, CALL.Request|id, Options|dict]

9.2.4. INTERRUPT

The INTERRUPT message is used with the Call Canceling advanced feature. Upon receiving a
cancel for a pending call, a Dealer will issue an interrupt to the Callee.

 [INTERRUPT, INVOCATION.Request|id, Options|dict]

10. Meta API

10.1. Session Meta API
WAMP enables the monitoring of when sessions join a realm on the router or when they leave it
via Session Meta Events. It also allows retrieving information about currently connected
sessions via Session Meta Procedures.

Meta events are created by the router itself. This means that the events, as well as the data
received when calling a meta procedure, can be accorded the same trust level as the router.

Note that an implementation that only supports a Broker or Dealer role, not both at the
same time, essentially cannot offer the Session Meta API, as it requires both roles to
support this feature.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 65

The following sections contain an informal, easy to digest description of the WAMP procedures
and topics available in (this part of) the WAMP Meta API. A formal definition of the WAMP Meta
API in terms of available WAMP procedures and topics including precise and complete type
definitions of the application payloads, that is procedure arguments and results or event
payloads is contained in

Compiled Binary Schema: <WAMP API Catalog>/schema/wamp-meta.bfbs

FlatBuffers Schema Source: <WAMP API Catalog>/src/wamp-meta.fbs

which uses FlatBuffers IDL to describe the API. The method of using FlatBuffers IDL and type
definitions to formally define WAMP procedures and topics is detailed in section WAMP IDL.

Feature Announcement

Support for this feature MUST be announced by both Dealers and Brokers via:

Here is a WELCOME message from a Router with support for both the Broker and Dealer role, and
with support for Session Meta API:

Note in particular that the feature is announced on both the Broker and the Dealer roles.

•

•

 HELLO.Details.roles.<role>.features.
 session_meta_api|bool := true

 [
 2,
 4580268554656113,
 {
 "authid":"OL3AeppwDLXiAAPbqm9IVhnw",
 "authrole": "anonymous",
 "authmethod": "anonymous",
 "roles": {
 "broker": {
 "features": {
 "session_meta_api": true
 }
 },
 "dealer": {
 "features": {
 "session_meta_api": true
 }
 }
 }
 }
]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 66

10.1.1. Events

A client can subscribe to the following session meta-events, which cover the lifecycle of a session:

wamp.session.on_join: Fired when a session joins a realm on the router.

wamp.session.on_leave: Fired when a session leaves a realm on the router or is disconnected.

Session Meta Events MUST be dispatched by the Router to the same realm as the WAMP session
which triggered the event.

•

•

10.1.1.1. wamp.session.on_join
Fired when a session joins a realm on the router. The event payload consists of a single positional
argument details|dict:

session|id - The session ID of the session that joined

authid|string - The authentication ID of the session that joined

authrole|string - The authentication role of the session that joined

authmethod|string - The authentication method that was used for authentication the session
that joined
authprovider|string- The provider that performed the authentication of the session that joined

transport|dict - Optional, implementation defined information about the WAMP transport the
joined session is running over.

See Authentication for a description of the authid, authrole, authmethod and

authprovider properties.

•

•

•

•

•

•

10.1.1.2. wamp.session.on_leave
Fired when a session leaves a realm on the router or is disconnected. The event payload consists
of three positional arguments:

session|id - The session ID of the session that left

authid|string` - The authentication ID of the session that left

authrole|string - The authentication role of the session that left

•

•

•

10.1.2. Procedures

A client can actively retrieve information about sessions, or forcefully close sessions, via the
following meta-procedures:

wamp.session.count: Obtains the number of sessions currently attached to the realm. •

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 67

wamp.session.list: Retrieves a list of the session IDs for all sessions currently attached to the
realm.
wamp.session.get: Retrieves information on a specific session.

wamp.session.kill: Kill a single session identified by session ID.

wamp.session.kill_by_authid: Kill all currently connected sessions that have the specified
authid.
wamp.session.kill_by_authrole: Kill all currently connected sessions that have the specified
authrole.
wamp.session.kill_all: Kill all currently connected sessions in the caller's realm.

Session meta procedures MUST be registered by the Router on the same realm as the WAMP
session about which information is retrieved.

•

•

•

•

•

•

10.1.2.1. wamp.session.count
Obtains the number of sessions currently attached to the realm.

Positional arguments

filter_authroles|list[string] - Optional filter: if provided, only count sessions with an authrole
from this list.

Positional results

count|int - The number of sessions currently attached to the realm.

1.

1.

10.1.2.2. wamp.session.list
Retrieves a list of the session IDs for all sessions currently attached to the realm.

Positional arguments

filter_authroles|list[string] - Optional filter: if provided, only count sessions with an authrole
from this list.

Positional results

session_ids|list - List of WAMP session IDs (order undefined).

1.

1.

10.1.2.3. wamp.session.get
Retrieves information on a specific session.

Positional arguments

session|id - The session ID of the session to retrieve details for. 1.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 68

Positional results

details|dict - Information on a particular session:

session|id - The session ID of the session that joined

authid|string - The authentication ID of the session that joined

authrole|string - The authentication role of the session that joined

authmethod|string - The authentication method that was used for authentication the
session that joined
authprovider|string- The provider that performed the authentication of the session that
joined
transport|dict - Optional, implementation defined information about the WAMP transport
the joined session is running over.

See Authentication for a description of the authid, authrole, authmethod and

authprovider properties.

Errors

wamp.error.no_such_session - No session with the given ID exists on the router.

1.

◦
◦
◦
◦

◦

◦

•

10.1.2.4. wamp.session.kill
Kill a single session identified by session ID.

The caller of this meta procedure may only specify session IDs other than its own session.
Specifying the caller's own session will result in a wamp.error.no_such_session since no other
session with that ID exists.

The keyword arguments are optional, and if not provided the reason defaults to wamp.close.killed
and the message is omitted from the GOODBYE sent to the closed session.

Positional arguments

session|id - The session ID of the session to close.

Keyword arguments

reason|uri - reason for closing session, sent to client in GOODBYE.Reason.

message|string - additional information sent to client in GOODBYE.Details under the key
"message".

1.

1.

2.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 69

Errors

wamp.error.no_such_session - No session with the given ID exists on the router.

wamp.error.invalid_uri - A reason keyword argument has a value that is not a valid non-empty
URI.

•

•

10.1.2.5. wamp.session.kill_by_authid
Kill all currently connected sessions that have the specified authid.

If the caller's own session has the specified authid, the caller's session is excluded from the closed
sessions.

The keyword arguments are optional, and if not provided the reason defaults to wamp.close.killed
and the message is omitted from the GOODBYE sent to the closed session.

Positional arguments

authid|string - The authentication ID identifying sessions to close.

Keyword arguments

reason|uri - reason for closing sessions, sent to clients in GOODBYE.Reason

message|string - additional information sent to clients in GOODBYE.Details under the key
"message".

Positional results

sessions|list - The list of WAMP session IDs of session that were killed.

Errors

wamp.error.invalid_uri - A reason keyword argument has a value that is not a valid non-empty
URI.

1.

1.

2.

1.

•

10.1.2.6. wamp.session.kill_by_authrole
Kill all currently connected sessions that have the specified authrole.

If the caller's own session has the specified authrole, the caller's session is excluded from the
closed sessions.

The keyword arguments are optional, and if not provided the reason defaults to wamp.close.killed
and the message is omitted from the GOODBYE sent to the closed session.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 70

Positional arguments

authrole|string - The authentication role identifying sessions to close.

Keyword arguments

reason|uri - reason for closing sessions, sent to clients in GOODBYE.Reason

message|string - additional information sent to clients in GOODBYE.Details under the key
"message".

Positional results

count|int - The number of sessions closed by this meta procedure.

Errors

wamp.error.invalid_uri - A reason keyword argument has a value that is not a valid non-empty
URI.

1.

1.

2.

1.

•

10.1.2.7. wamp.session.kill_all
Kill all currently connected sessions in the caller's realm.

The caller's own session is excluded from the closed sessions. Closing all sessions in the realm
will not generate session meta events or testament events, since no subscribers would remain to
receive these events.

The keyword arguments are optional, and if not provided the reason defaults to wamp.close.killed
and the message is omitted from the GOODBYE sent to the closed session.

Keyword arguments

reason|uri - reason for closing sessions, sent to clients in GOODBYE.Reason

message|string - additional information sent to clients in GOODBYE.Details under the key
"message".

Positional results

count|int - The number of sessions closed by this meta procedure.

Errors

wamp.error.invalid_uri - A reason keyword argument has a value that is not a valid non-empty
URI.

1.

2.

1.

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 71

10.2. Registration Meta API
Registration Meta Events are fired when registrations are first created, when Callees are
attached (removed) to (from) a registration, and when registrations are finally destroyed.

Furthermore, WAMP allows actively retrieving information about registrations via Registration
Meta Procedures.

Meta-events are created by the router itself. This means that the events as well as the data
received when calling a meta-procedure can be accorded the same trust level as the router.

Note that an implementation that only supports a Broker or Dealer role, not both at the
same time, essentially cannot offer the Registration Meta API, as it requires both roles
to support this feature.

The following sections contain an informal, easy to digest description of the WAMP procedures
and topics available in (this part of) the WAMP Meta API. A formal definition of the WAMP Meta
API in terms of available WAMP procedures and topics including precise and complete type
definitions of the application payloads, that is procedure arguments and results or event
payloads is contained in:

Compiled Binary Schema: <WAMP API Catalog>/schema/wamp-meta.bfbs

FlatBuffers Schema Source: <WAMP API Catalog>/src/wamp-meta.fbs

which uses FlatBuffers IDL to describe the API. The method of using FlatBuffers IDL and type
definitions to formally define WAMP procedures and topics is detailed in section WAMP IDL.

Feature Announcement

Support for this feature MUST be announced by a Dealers (role := "dealer") via:

Here is a WELCOME message from a Router with support for both the Broker and Dealer role, and
with support for Registration Meta API:

•

•

 HELLO.Details.roles.<role>.features.
 registration_meta_api|bool := true

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 72

 [
 2,
 4580268554656113,
 {
 "authid":"OL3AeppwDLXiAAPbqm9IVhnw",
 "authrole": "anonymous",
 "authmethod": "anonymous",
 "roles": {
 "broker": {
 "features": {
 }
 },
 "dealer": {
 "features": {
 "registration_meta_api": true
 }
 }
 }
 }
]

10.2.1. Events

A client can subscribe to the following registration meta-events, which cover the lifecycle of a
registration:

wamp.registration.on_create: Fired when a registration is created through a registration
request for a URI which was previously without a registration.
wamp.registration.on_register: Fired when a Callee session is added to a registration.

wamp.registration.on_unregister: Fired when a Callee session is removed from a registration.

wamp.registration.on_delete: Fired when a registration is deleted after the last Callee session
attached to it has been removed.

A wamp.registration.on_register event MUST be fired subsequent to a wamp.registration.on_create
event, since the first registration results in both the creation of the registration and the addition
of a session.

Similarly, the wamp.registration.on_delete event MUST be preceded by a

wamp.registration.on_unregister event.

Registration Meta Events MUST be dispatched by the router to the same realm as the WAMP
session which triggered the event.

•

•

•

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 73

10.2.1.1. wamp.registration.on_create
Fired when a registration is created through a registration request for a URI which was
previously without a registration. The event payload consists of positional arguments:

session|id: The session ID performing the registration request.

RegistrationDetails|dict: Information on the created registration.

Object Schemas

See Pattern-based Registrations for a description of match_policy.

NOTE: invocation_policy IS NOT YET DESCRIBED IN THE ADVANCED SPEC

•

•

 RegistrationDetails :=
 {
 "id": registration|id,
 "created": time_created|iso_8601_string,
 "uri": procedure|uri,
 "match": match_policy|string,
 "invoke": invocation_policy|string
 }

10.2.1.2. wamp.registration.on_register
Fired when a session is added to a registration. The event payload consists of positional
arguments:

session|id: The ID of the session being added to a registration.

registration|id: The ID of the registration to which a session is being added.

•

•

10.2.1.3. wamp.registration.on_unregister
Fired when a session is removed from a subscription. The event payload consists of positional
arguments:

session|id: The ID of the session being removed from a registration.

registration|id: The ID of the registration from which a session is being removed.

•

•

10.2.1.4. wamp.registration.on_delete
Fired when a registration is deleted after the last session attached to it has been removed. The
event payload consists of positional arguments:

session|id: The ID of the last session being removed from a registration. •

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 74

file:///home/runner/work/wamp-site-gen/wamp-site-gen/wamp-proto/pattern-based-registration.md

registration|id: The ID of the registration being deleted. •

10.2.2. Procedures

A client can actively retrieve information about registrations via the following meta-procedures:

wamp.registration.list: Retrieves registration IDs listed according to match policies.

wamp.registration.lookup: Obtains the registration (if any) managing a procedure, according
to some match policy.
wamp.registration.match: Obtains the registration best matching a given procedure URI.

wamp.registration.get: Retrieves information on a particular registration.

wamp.registration.list_callees: Retrieves a list of session IDs for sessions currently attached to
the registration.
wamp.registration.count_callees: Obtains the number of sessions currently attached to the
registration.

•

•

•

•

•

•

10.2.2.1. wamp.registration.list
Retrieves registration IDs listed according to match policies.

Arguments

None

Results

RegistrationLists|dict: A dictionary with a list of registration IDs for each match policy.

Object Schemas

See Pattern-based Registrations for a description of match policies.

•

•

 RegistrationLists :=
 {
 "exact": registration_ids|list,
 "prefix": registration_ids|list,
 "wildcard": registration_ids|list
 }

10.2.2.2. wamp.registration.lookup
Obtains the registration (if any) managing a procedure, according to some match policy.

Arguments

procedure|uri: The procedure to lookup the registration for. •

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 75

file:///home/runner/work/wamp-site-gen/wamp-site-gen/wamp-proto/pattern-based-registration.md

(Optional) options|dict: Same options as when registering a procedure.

Results

(Nullable) registration|id: The ID of the registration managing the procedure, if found, or
null.

•

•

10.2.2.3. wamp.registration.match
Obtains the registration best matching a given procedure URI.

Arguments

procedure|uri: The procedure URI to match

Results

(Nullable) registration|id: The ID of best matching registration, or null.

•

•

10.2.2.4. wamp.registration.get
Retrieves information on a particular registration.

Arguments

registration|id: The ID of the registration to retrieve.

Results

RegistrationDetails|dict: Details on the registration.

Error URIs

wamp.error.no_such_registration: No registration with the given ID exists on the router.

Object Schemas

See Pattern-based Registrations for a description of match policies.

NOTE: invocation_policy IS NOT YET DESCRIBED IN THE ADVANCED SPEC

•

•

•

 RegistrationDetails :=
 {
 "id": registration|id,
 "created": time_created|iso_8601_string,
 "uri": procedure|uri,
 "match": match_policy|string,
 "invoke": invocation_policy|string
 }

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 76

file:///home/runner/work/wamp-site-gen/wamp-site-gen/wamp-proto/pattern-based-registration.md

10.2.2.5. wamp.registration.list_callees
Retrieves a list of session IDs for sessions currently attached to the registration.

Arguments

registration|id: The ID of the registration to get callees for.

Results

callee_ids|list: A list of WAMP session IDs of callees currently attached to the registration.

Error URIs

wamp.error.no_such_registration: No registration with the given ID exists on the router.

•

•

•

10.2.2.6. wamp.registration.count_callees
Obtains the number of sessions currently attached to a registration.

Arguments

registration|id: The ID of the registration to get the number of callees for.

Results

count|int: The number of callees currently attached to a registration.

Error URIs

wamp.error.no_such_registration: No registration with the given ID exists on the router.

•

•

•

10.3. Subscriptions Meta API
Within an application, it may be desirable for a publisher to know whether a publication to a
specific topic currently makes sense, i.e. whether there are any subscribers who would receive
an event based on the publication. It may also be desirable to keep a current count of subscribers
to a topic to then be able to filter out any subscribers who are not supposed to receive an event.

Subscription meta-events are fired when topics are first created, when clients subscribe/
unsubscribe to them, and when topics are deleted. WAMP allows retrieving information about
subscriptions via subscription meta-procedures.

Support for this feature MUST be announced by Brokers via

 HELLO.Details.roles.broker.features.subscription_meta_api|
 bool := true

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 77

Meta-events are created by the router itself. This means that the events as well as the data
received when calling a meta-procedure can be accorded the same trust level as the router.

The following sections contain an informal, easy to digest description of the WAMP procedures
and topics available in (this part of) the WAMP Meta API. A formal definition of the WAMP Meta
API in terms of available WAMP procedures and topics including precise and complete type
definitions of the application payloads, that is procedure arguments and results or event
payloads is contained in

Compiled Binary Schema: <WAMP API Catalog>/schema/wamp-meta.bfbs

FlatBuffers Schema Source: <WAMP API Catalog>/src/wamp-meta.fbs

which uses FlatBuffers IDL to describe the API. The method of using FlatBuffers IDL and type
definitions to formally define WAMP procedures and topics is detailed in section WAMP IDL.

Feature Announcement

Support for this feature MUST be announced by a Brokers (role := "nroker") via:

Here is a WELCOME message from a Router with support for both the Broker and Dealer role, and
with support for Subscription Meta API:

•

•

 HELLO.Details.roles.<role>.features.
 subscription_meta_api|bool := true

 [
 2,
 4580268554656113,
 {
 "authid":"OL3AeppwDLXiAAPbqm9IVhnw",
 "authrole": "anonymous",
 "authmethod": "anonymous",
 "roles": {
 "broker": {
 "features": {
 "subscription_meta_api": true
 }
 },
 "dealer": {
 "features": {
 }
 }
 }
 }
]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 78

10.3.1. Events

A client can subscribe to the following session meta-events, which cover the lifecycle of a
subscription:

wamp.subscription.on_create: Fired when a subscription is created through a subscription
request for a topic which was previously without subscribers.
wamp.subscription.on_subscribe: Fired when a session is added to a subscription.

wamp.subscription.on_unsubscribe: Fired when a session is removed from a subscription.

wamp.subscription.on_delete: Fired when a subscription is deleted after the last session
attached to it has been removed.

A wamp.subscription.on_subscribe event MUST always be fired subsequent to a

wamp.subscription.on_create event, since the first subscribe results in both the creation of the

subscription and the addition of a session. Similarly, the wamp.subscription.on_delete event MUST

always be preceded by a wamp.subscription.on_unsubscribe event.

The WAMP subscription meta events shall be dispatched by the router to the same realm as the
WAMP session which triggered the event.

•

•

•

•

10.3.1.1. wamp.subscription.on_create
Fired when a subscription is created through a subscription request for a topic which was
previously without subscribers. The event payload consists of positional arguments:

session|id: ID of the session performing the subscription request.

SubscriptionDetails|dict: Information on the created subscription.

Object Schemas

See Pattern-based Subscriptions for a description of match_policy.

•

•

 SubscriptionDetails :=
 {
 "id": subscription|id,
 "created": time_created|iso_8601_string,
 "uri": topic|uri,
 "match": match_policy|string
 }

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 79

10.3.1.2. wamp.subscription.on_subscribe
Fired when a session is added to a subscription. The event payload consists of positional
arguments:

session|id: ID of the session being added to a subscription.

subscription|id: ID of the subscription to which the session is being added.

•

•

10.3.1.3. wamp.subscription.on_unsubscribe
Fired when a session is removed from a subscription. The event payload consists of positional
arguments:

session|id: ID of the session being removed from a subscription.

subscription|id: ID of the subscription from which the session is being removed.

•

•

10.3.1.4. wamp.subscription.on_delete
Fired when a subscription is deleted after the last session attached to it has been removed. The
event payload consists of positional arguments:

session|id: ID of the last session being removed from a subscription.

subscription|id: ID of the subscription being deleted.

•

•

10.3.2. Procedures

A client can actively retrieve information about subscriptions via the following meta-procedures:

wamp.subscription.list: Retrieves subscription IDs listed according to match policies.

wamp.subscription.lookup: Obtains the subscription (if any) managing a topic, according to
some match policy.
wamp.subscription.match: Retrieves a list of IDs of subscriptions matching a topic URI,
irrespective of match policy.
wamp.subscription.get: Retrieves information on a particular subscription.

wamp.subscription.list_subscribers: Retrieves a list of session IDs for sessions currently
attached to the subscription.
wamp.subscription.count_subscribers: Obtains the number of sessions currently attached to
the subscription.

•

•

•

•

•

•

10.3.2.1. wamp.subscription.list
Retrieves subscription IDs listed according to match policies.

Arguments - None

Results

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 80

The result consists of one positional argument:

SubscriptionLists|dict: A dictionary with a list of subscription IDs for each match policy.

Object Schemas

See Pattern-based Subscriptions for information on match policies.

•

 SubscriptionLists :=
 {
 "exact": subscription_ids|list,
 "prefix": subscription_ids|list,
 "wildcard": subscription_ids|list
 }

10.3.2.2. wamp.subscription.lookup
Obtains the subscription (if any) managing a topic, according to some match policy.

Arguments

topic|uri: The URI of the topic.

(Optional) options|dict: Same options as when subscribing to a topic.

Results

The result consists of one positional argument:

(Nullable) subscription|id: The ID of the subscription managing the topic, if found, or null.

•

•

•

10.3.2.3. wamp.subscription.match
Retrieves a list of IDs of subscriptions matching a topic URI, irrespective of match policy.

Arguments

topic|uri: The topic to match.

Results

The result consists of positional arguments:

(Nullable) subscription_ids|list: A list of all matching subscription IDs, or null.

•

•

10.3.2.4. wamp.subscription.get
Retrieves information on a particular subscription.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 81

Arguments

subscription|id: The ID of the subscription to retrieve.

Results

The result consists of one positional argument:

SubscriptionDetails|dict: Details on the subscription.

Error URIs

wamp.error.no_such_subscription: No subscription with the given ID exists on the router.

Object Schemas

See Pattern-based Subscriptions for information on match policies.

•

•

•

 SubscriptionDetails :=
 {
 "id": subscription|id,
 "created": time_created|iso_8601_string,
 "uri": topic|uri,
 "match": match_policy|string
 }

10.3.2.5. wamp.subscription.list_subscribers
Retrieves a list of session IDs for sessions currently attached to the subscription.

Arguments - subscription|id: The ID of the subscription to get subscribers for.

Results

The result consists of positional arguments:

subscribers_ids|list: A list of WAMP session IDs of subscribers currently attached to the
subscription.

Error URIs

wamp.error.no_such_subscription: No subscription with the given ID exists on the router.

•

•

10.3.2.6. wamp.subscription.count_subscribers
Obtains the number of sessions currently attached to a subscription.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 82

Arguments

subscription|id: The ID of the subscription to get the number of subscribers for.

Results

The result consists of one positional argument:

count|int: The number of sessions currently attached to a subscription.

Error URIs

wamp.error.no_such_subscription: No subscription with the given ID exists on the router.

•

•

•

11. Advanced RPC

11.1. Progressive Call Results
A procedure implemented by a Callee and registered at a Dealer may produce progressive results.
Progressive results can e.g. be used to return partial results for long-running operations, or to
chunk the transmission of larger results sets.

Feature Announcement

Support for this advanced feature MUST be announced by Callers (role := "caller"), Callees (role :=
"callee") and Dealers (role := "dealer") via

Additionally, Callees and Dealers MUST support Call Canceling, which is required for canceling
progressive results if the original Caller leaves the realm. If a Callee supports Progressive Call
Results, but not Call Canceling, then the Dealer disregards the Callees Progressive Call Results
feature.

Message Flow

The message flow for progressive results involves:

 HELLO.Details.roles.<role>.features.
 progressive_call_results|bool := true

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 83

A Caller indicates its willingness to receive progressive results by setting

Example. Caller-to-Dealer CALL

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL | |
 | -----------------> |
 | | |
 | | INVOCATION |
 | | ---------------->
 | | |
 | | YIELD (progress)|
 | | <----------------
 | | |
 | RESULT (progress)| |
 | <----------------- |
 | | |
 | | YIELD (progress)|
 | | <----------------
 | | |
 | RESULT (progress)| |
 | <----------------- |
 | | |
 | | |
 | ... | ... |
 | | |
 | | YIELD or ERROR |
 | | <----------------
 | | |
 | RESULT or ERROR | |
 | <----------------- |
 ,--+---. ,--+---. ,--+---.
 |Caller| |Dealer| |Callee|
 `------' `------' `------'

 CALL.Options.receive_progress|bool := true

 [
 48,
 77133,
 {
 "receive_progress": true
 },
 "com.myapp.compute_revenue",
 [2010, 2011, 2012]
]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 84

If the Callee supports Progressive Call Results, the Dealer will forward the Caller's willingness to
receive progressive results by setting

Example. Dealer-to-Callee INVOCATION

An endpoint implementing the procedure produces progressive results by sending YIELD
messages to the Dealer with

Example. Callee-to-Dealer progressive YIELDs

Upon receiving an YIELD message from a Callee with YIELD.Options.progress == true (for a call that

is still ongoing), the Dealer will immediately send a RESULT message to the original Caller with

 INVOCATION.Details.receive_progress|bool := true

 [
 68,
 87683,
 324,
 {
 "receive_progress": true
 },
 [2010, 2011, 2012]
]

 YIELD.Options.progress|bool := true

 [
 70,
 87683,
 {
 "progress": true
 },
 ["Y2010", 120]
]

 [
 70,
 87683,
 {
 "progress": true
 },
 ["Y2011", 205]
]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 85

Example. Dealer-to-Caller progressive RESULTs

and so on...

An invocation MUST always end in either a normal RESULT or ERROR message being sent by the
Callee and received by the Dealer.

Example. Callee-to-Dealer final YIELD

Example. Callee-to-Dealer final ERROR

 RESULT.Details.progress|bool := true

 [
 50,
 77133,
 {
 "progress": true
 },
 ["Y2010", 120]
]

 [
 50,
 77133,
 {
 "progress": true
 },
 ["Y2011", 205]
]

 [
 70,
 87683,
 {},
 ["Total", 490]
]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 86

A call MUST always end in either a normal RESULT or ERROR message being sent by the Dealer
and received by the Caller.

Example. Dealer-to-Caller final RESULT

Example. Dealer-to-Caller final ERROR

In other words: YIELD with YIELD.Options.progress == true and RESULT with RESULT.Details.progress
== true messages may only be sent during a call or invocation is still ongoing.

The final YIELD and final RESULT may also be empty, e.g. when all actual results have already
been transmitted in progressive result messages.

Example. Callee-to-Dealer YIELDs

 [
 8,
 68,
 87683,
 {},
 "com.myapp.invalid_revenue_year",
 [1830]
]

 [
 50,
 77133,
 {},
 ["Total", 490]
]

 [
 8,
 68,
 77133,
 {},
 "com.myapp.invalid_revenue_year",
 [1830]
]

 [70, 87683, {"progress": true}, ["Y2010", 120]]
 [70, 87683, {"progress": true}, ["Y2011", 205]]
 ...
 [70, 87683, {"progress": true}, ["Total", 490]]
 [70, 87683, {}]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 87

Example. Dealer-to-Caller RESULTs

The progressive YIELD and progressive RESULT may also be empty, e.g. when those messages are
only used to signal that the procedure is still running and working, and the actual result is
completely delivered in the final YIELD and RESULT:

Example. Callee-to-Dealer YIELDs

Example. Dealer-to-Caller RESULTs

Note that intermediate, progressive results and/or the final result MAY have different
structure. The WAMP peer implementation is responsible for mapping everything into a
form suitable for consumption in the host language.

Example. Callee-to-Dealer YIELDs

Example. Dealer-to-Caller RESULTs

 [50, 77133, {"progress": true}, ["Y2010", 120]]
 [50, 77133, {"progress": true}, ["Y2011", 205]]
 ...
 [50, 77133, {"progress": true}, ["Total", 490]]
 [50, 77133, {}]

 [70, 87683, {"progress": true}]
 [70, 87683, {"progress": true}]
 ...
 [70, 87683, {}, [["Y2010", 120], ["Y2011", 205], ...,
 ["Total", 490]]]

 [50, 77133, {"progress": true}]
 [50, 77133, {"progress": true}]
 ...
 [50, 77133, {}, [["Y2010", 120], ["Y2011", 205], ...,
 ["Total", 490]]]

 [70, 87683, {"progress": true}, ["partial 1", 10]]
 [70, 87683, {"progress": true}, [], {"foo": 10,
 "bar": "partial 1"}]
 ...
 [70, 87683, {}, [1, 2, 3], {"moo": "hello"}]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 88

Even if a Caller has indicated its expectation to receive progressive results by setting
CALL.Options.receive_progress|bool := true, a Callee is not required to produce progressive results.

CALL.Options.receive_progress and INVOCATION.Details.receive_progress are simply indications that
the Caller is prepared to process progressive results, should there be any produced. In other
words, Callees are free to ignore such receive_progress hints at any time.

Caller Leaving

The Dealer's behavior for when a Caller leaves or disconnects during a progressive results call
shall be the same as in a basic, non-progressive call. That is, the Dealer sends an INTERRUPT to
the Callee with mode="killnowait". See Caller Leaving During RPC Invocation under the Basic
Profile.

Such cancellation when the caller leaves addresses a potential security vulnerability: In cases
where progressive results are used to stream data to Callers, and network connectivity is
unreliable, Callers may often get disconnected in the middle of receiving such progressive
results. Without the mandated cancellation behavior, recurring connect-call-disconnect cycles by
a Caller would result in a rapidly growing backlog of unprocessed streaming results, overloading
the router and further degrading network connectivity.

 [50, 77133, {"progress": true}, ["partial 1", 10]]
 [50, 77133, {"progress": true}, [], {"foo": 10,
 "bar": "partial 1"}]
 ...
 [50, 77133, {}, [1, 2, 3], {"moo": "hello"}]

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL | |
 | -----------------> |
 | | INVOCATION |
 | | ---------------->
 | | |
 | | YIELD (progress)|
 | | <----------------
 | | |
 | RESULT (progress)| |
 | <----------------- |
 ,--+---. | |
 |Caller| | |
 `------' | INTERRUPT |
 (gone) | ---------------->
 | |
 ,--+---. ,--+---.
 |Dealer| |Callee|
 `------' `------'

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 89

Callee Leaving

The Dealer's behavior for when a Callee leaves or disconnects during a progressive results call
shall be the same as in a basic, non-progressive call. That is, the Dealer sends an ERROR message
to the Caller with the wamp.error.canceled URI. See Callee Leaving During an RPC Invocation
under the Basic Profile.

Ignoring Requests for Progressive Call Results

A Callee that does not support progressive results SHOULD ignore any
INVOCATION.Details.receive_progress flag.

A Callee that supports progressive results, but does not support call canceling is considered by
the Dealer to not support progressive results.

Timeouts

When the Call Timeouts feature is used in combination with Progressive Call Results, the
CALL.Options.timeout|integer option shall represent the time limit between the initial call and the
first result, and between results thereafter.

For Dealer-initiated timeouts, this corresponds to - the time between receipt of the CALL message

and receipt of the first YIELD message, and, - the time between received YIELD messages
thereafter.

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL | |
 | -----------------> |
 | | INVOCATION |
 | | ---------------->
 | | |
 | | YIELD (progress)|
 | | <----------------
 | | |
 | RESULT (progress)| |
 | <----------------| |
 | | ,--+---.
 | | |Callee|
 | | `------'
 | ERROR | (gone)
 | <--------------- |
 | |
 ,--+---. ,--+---.
 |Caller| |Dealer|
 `------' `------'

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 90

For Callee-initiated timeouts, this corresponds to - the time between receipt of the INVOCATION
message and acquisition of the first result, and, - the time between acquisition of successive
results thereafter.

Note that for progressive results, the timeout value does not correspond to the duration of the
complete call from initiation to the final result. The rationale for this is that it would be
unfeasible to compute a reasonable timeout value for a call having a non-deterministic number
of progressive results.

11.2. Progressive Call Invocations
A Caller may issue a call having progressive invocations. This can be useful in a few cases:

Payload is too big to send it whole in one request, e.g., uploading a file.
Long-term data transfer that needs to be consumed early, such as a media stream.
RPC is called too often and overall processing can be optimized: avoid the need to generate a
new id for requests, initiate data structures for a new call, etc.

In such cases, a procedure implemented by a Callee and registered at a Dealer may be made to
receive progressive call invocations, where the Callee may start processing the incoming data
without awaiting the entire set of payload chunks.

Feature Announcement

Support for this advanced feature MUST be announced by Callers (role := "caller"), Callees (role :=
"callee") and Dealers (role := "dealer") via

Progressive call invocations can work only if all three peers support and announce this feature.
In addition, Callees MUST announce support of the Call Cancelling feature via

As a consequence, Dealers MUST also announce support of the Call Cancelling feature via

The following cases, where a Caller sends a CALL message with progress := true, MUST be treated
as protocol errors with the underlying WAMP sessions being aborted:

The Caller did not announce the progressive call invocations feature during the HELLO
handshake.

•
•
•

 HELLO.Details.roles.<role>.features.progressive_call_invocations|bool := true

 HELLO.Details.roles.callee.features.call_cancelling|bool := true

 WELCOME.Details.roles.dealer.features.call_cancelling|bool := true

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 91

The Dealer did not announce the progressive call invocations feature during the HELLO
handshake.

Otherwise, in cases where the Caller sends a CALL message with progress := true but the Callee
does not support progressive call invocations or call cancelling, the call MUST be treated as an
application error with the Dealer responding to the Caller with the
wamp.error.feature_not_supported error message.

Message Flow

The message flow for a progressive call when a Callee waits for all chunks before processing and
sending a single result:

As a progressive call chunks are part of the same overall call, the Caller must send the same

Request|id for every CALL and the Dealer must also use the same Request|id with every

INVOCATION to the Callee.

A Caller indicates its willingness to issue a progressive call by setting

•

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL (progress) | |
 | ----------------------> | |
 | | INVOCATION (progress) |
 | | ---------------------->|
 | CALL (progress) | |
 | ----------------------->| |
 | | INVOCATION (progress) |
 | | ---------------------->|
 | | |
 | ... | ... |
 | | |
 | CALL (final) | |
 | ----------------------->| |
 | | INVOCATION (final) |
 | | ---------------------->|
 | | |
 | | YIELD (final) or ERROR |
 | | <----------------------|
 | | |
 | RESULT (final) or ERROR | |
 | <-----------------------| |
 ,--+---. ,--+---. ,--+---.
 |Caller| |Dealer| |Callee|
 `------' `------' `------'

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 92

Example. Caller-to-Dealer CALL

If the Callee supports progressive call invocations, the Dealer shall forward the Caller's
willingness to send progressive call invocations by setting

Example. Dealer-to-Callee INVOCATION

A call invocation MUST always end in a normal CALL without the "progress": true option, or

explicitly set "progress": false which is the default.

Progressive Call Invocations and Shared Registration

RPCs can have a multiple registrations (see Shared Registration feature) with different

<invocation_policies>. However, allowing progressive CALL messages to be routed to different
Callees would lead to unexpected results. To prevent this the Dealer MUST make a first
INVOCATION based on <invocation_policy> and then route all subsequent progressive calls to the
same Callee.

Caller Leaving

 CALL.Options.progress|bool := true

 [
 48,
 77245,
 {
 "progress": true
 },
 "com.myapp.get_country_by_coords",
 [50.450001, 30.523333]
]

 INVOCATION.Details.progress|bool := true

 [
 68,
 35224,
 379,
 {
 "progress": true
 },
 [50.450001, 30.523333]
]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 93

The Dealer's behavior for when a Caller leaves or disconnects during a call with progressive
invocations shall be the same as in a basic, non-progressive call. That is, the Dealer sends an
INTERRUPT to the Callee with mode="killnowait". See Caller Leaving During RPC Invocation under
the Basic Profile.

As in progressive call results, such cancellation when the caller leaves addresses a potential
security vulnerability: In cases where progressive call invocations are used to stream data from a
Caller, and network connectivity is unreliable, the Caller may often get disconnected in the
middle of sending progressive data. This can lead to unneeded memory consumption for the
Dealer and Callee, due to the need to store temporary metadata about ongoing calls.

Callee Leaving

The Dealer's behavior for when a Callee leaves or disconnects during a call with progressive
invocations shall be the same as in a basic, non-progressive call. That is, the Dealer sends an
ERROR message to the Caller with the wamp.error.canceled URI. See Callee Leaving During an RPC
Invocation under the Basic Profile.

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL (progress) | |
 | ----------------->| |
 | | INVOCATION (progress) |
 | | ---------------------->|
 | CALL (progress) | |
 | ----------------->| |
 | | INVOCATION (progress) |
 | | ---------------------->|
 ,--+---. | |
 |Caller| | |
 `------' | |
 (gone) | |
 | INTERRUPT |
 | ---------------------->|
 | |
 ,--+---. ,--+---.
 |Dealer| |Callee|
 `------' `------'

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 94

Continuations on Completed Calls

A call with progressive invocations is considered completed by the Dealer when the latter
receives a correlated final YIELD or ERROR message from the Callee, or when the Callee leaves
the realm.

Due to network delays, the Caller may be unaware that the call is completed by time it sends
another progressive CALL continuation.

When a Dealer receives a CALL under the following conditions:

the Dealer supports Progressive Call Invocations,
the CALL request ID does not correspond to a new call request, and,
the CALL request ID does not match any RPC invocation in progress,

then it MUST ignore and discard that CALL message without any further correlated response to
the Caller. The rationale for this is that the Caller will eventually receive a correlated RESULT or
ERROR message from the previous call completion and will be able to handle the call completion
accordingly.

The sequence diagram below illustrates this sitation, where the Network actor models network
delay.

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL (progress) | |
 | -----------------> |
 | | INVOCATION (progress) |
 | | ---------------------->
 | | |
 | | |
 | | ,--+---.
 | | |Callee|
 | ERROR | `------'
 | <--------------- | (gone)
 | |
 ,--+---. ,--+---.
 |Caller| |Dealer|
 `------' `------'

•
•
•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 95

From the Callee's perspective, a call with progressive invocations is considered completed when
the Callee sends a correlated final YIELD or ERROR message.

Due to network delays, the Dealer may be unaware that the call is completed by time it sends
another progressive INVOCATION.

When a Callee receives an INVOCATION under the following conditions:

the Callee supports Progressive Call Invocations,
the INVOCATION request ID does not correspond to a new call request, and,
the INVOCATION request ID does not match any RPC invocation in progress,

then it MUST ignore and discard that INVOCATION message without any further correlated
response to the Dealer. The rationale for this is that the Dealer will eventually receive a
correlated YIELD or ERROR message from the Callee and then send a correlated RESULT or
ERROR message to the Caller, thus the Caller and the Dealer will both be able to handle the call
completion accordingly.

 ,------. ,-------. ,------. ,------.
 |Caller| |Network| |Dealer| |Callee|
 `--+---' `---+---' `--+---' `--+---'
 | CALL #123 | | |
 | (progress) | | |
 | ------------> CALL #123 | |
 | | (progress) | |
 | | ------------> INVOCATION |
 | | | (progress) |
 | | | ------------>
 | CALL #123 | | | | |
 | (progress) | | ERROR |
 | ------------> | <-----------|
 | | ERROR | |
 | | <-----------| |
 | | ,---------. | |
 | | | Call | | |
 | | |Completed| | |
 | | `---------' | |
 | | | |
 | | CALL #123 | |
 | | (progress) | |
 | | ------------> |
 | | ,---------. | |
 | | | Ignored | | |
 | | `---------' | |
 | ERROR | | |
 | <-----------| | |
 | | | |
 ,--+---. ,---+---. ,--+---. ,--+---.
 |Caller| |Network| |Dealer| |Callee|
 `------' `-------' `------' `------'

•
•
•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 96

The sequence diagram below illustrates this sitation, where the Network actor models network
delay.

Verification of CALL Request IDs

When sending a CALL that continues a progressive call, its request ID is the same as the CALL
that initiated the progressive call invocation. Therefore, when progressive call invocations are
enabled, request IDs from CALL messages may not appear sequential. For example:

[CALL, 1, {"progress":true}, "foo"]

[CALL, 2, {}, "bar"]

[CALL, 1, {}, "foo"] (OK, continues CALL request #1)

The requirement for CALL request IDs to be sequential session scope (see Protocol Violations)
must therefore only apply to new RPC transactions:

[CALL, 1, {"progress":true}, "foo"]

[CALL, 2, {}, "bar"]

[CALL, 4, {}, "baz"] (protocol violation, request ID 3 expected)

 ,------. ,------. ,-------. ,------.
 |Caller| |Dealer| |Network| |Callee|
 `--+---' `--+---' `---+---' `--+---'
 | CALL #123 | | |
 | (progres) | | |
 | -----------> | |
 | | INVOCATION #42 | |
 | | (progress) | |
 | | ---------------> |
 | | | INVOCATION #42 |
 | | | (progress) |
 | | | --------------->
 | CALL #123 | | |
 | (progress) | | ERROR |
 | -----------> | <--------------|
 | | INVOCATION #42 | |
 | | (progress) | |
 | | ---------------> |
 | | | INVOCATION #42 |
 | | | (progress) |
 | | ERROR | --------------->
 | | <--------------| ,-------. | | |
 | ERROR | | |Ignored| |
 | <----------| | `---+---' |
 | | | |
 ,--+---. ,--+---. ,---+---. ,--+---.
 |Caller| |Dealer| |Network| |Callee|
 `------' `------' `-------' `------'

1.

2.

3.

1.

2.

3.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 97

Let us define watermark as the maximum valid request ID of all received CALL messages during
a Dealer's run time.

Let us also define continuation candiate as a CALL with a request ID that is equal to or less than
the watermark.

When a Dealer receives a CALL with a request ID that is exactly one above the watermark, then it
shall be considered a new RPC transaction, and the requirement for sequential session scope IDs
is verified.

When a Dealer receives a CALL with a request ID that is greater than one above the watermark,
then this corresponds to a gap in the session scope ID sequence and MUST always be treated as a
protocol violation.

When a Dealer receives a CALL with a request ID that is equal to or less than the watermark,
then it is considered as a continuation candidate for a progressive invocation transfer.

As discussed in the previous section, a Caller may be unaware that a progressive invocation
transfer is completed while sending a CALL continuation for that progressive invocation.
Therefore, the Dealer cannot simply just check against progressive transfers in progress when
verifying the validity of continuation candidates. It must also consider past progressive transfers
that have been completed.

In order to validate the request ID of continuation candidates, it is suggested that a Dealer
maintain a table of request IDs of completed progressive invocation transfers, where each entry
is kept for a limited grace period. When a Dealer receives a continuation candidate with a request
ID that is not in that table, nor in the list of active progressive invocations, then it is considered a
protocol violation. Care must be taken in choosing the grace period: too short and data races can
occur with slow networks, too long and memory usage of the table may become excessive when
frequent progressive calls are made.

Due to resource constraints, it may not be desireable to implement such a grace period table, so
Dealers MAY instead discard continuation candidates with request IDs that cannot be found in
the list of active progressive invocation transfers.

The following pseudocode summarizes the algorithm for verifying CALL request IDs when
progressive call invocations are enabled:

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 98

Ignoring Progressive Call Invocations

Unlike some other advanced features, a Callee cannot be unaware of progressive call invocations.
Therefore, if a Callee doesn't support this feature, the Dealer MUST respond to the Caller with an
wamp.error.feature_not_supported error message.

A Callee that supports progressive call invocations, but does not support call canceling, shall be
considered by the Dealer as not supporting progressive call invocations.

Progressive Call Invocations with Progressive Call Results

Progressive Call Invocations may be used in conjunction with Progressive Call Results if the
Caller, Dealer, and Callee all support both features. This allows the Callee to start sending partial
results back to the Caller after receiving one or more initial payload chunks. Efficient two-way
streams between a Caller and Callee can be implemented this way.

The following message flow illustrates a call using progressive call invocations when a Callee
starts sending progressive call results immediately. Note that YIELD messages don't need to be

matched with CALL/INVOCATION messages. For example, the caller can send a few CALL messages

before starting to receive RESULT messages; they do not need to be matched pairs.

if (request_id == watermark + 1)
 watermark = watermak + 1
 initiate_new_call()
else if (request_id > watermark + 1)
 // Gap in request IDs
 abort_session("wamp.error.protocol_violation")
else
 // Continuation candidate
 if (active_call_records.contains(request_id, procedure_uri))
 record = active_call_records.at(request_id)
 if (record.is_progressive_invocation_call())
 continue_call()
 else
 abort_session("wamp.error.protocol_violation")
 endif
 else if (strict_request_id_verification_enabled)
 if (grace_period_table.contains(request_id, procedure_uri))
 discard_call()
 else
 abort_session("wamp.error.protocol_violation")
 endif
 else
 discard_call()
 endif
endif

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 99

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL (progress) | |
 |------------------------>| |
 | | INVOCATION (progress) |
 | |----------------------->|
 | | |
 | | YIELD (progress) |
 | |<-----------------------|
 | | |
 | RESULT (progress) | |
 |<------------------------| |
 | | |
 | CALL (progress) | |
 |------------------------>| |
 | | INVOCATION (progress) |
 | |----------------------->|
 | | |
 | CALL (progress) | |
 |------------------------>| |
 | | INVOCATION (progress) |
 | |----------------------->|
 | | YIELD (progress) |
 | |<-----------------------|
 | | |
 | RESULT (progress) | |
 |<------------------------| |
 | | |
 | | YIELD (progress) |
 | |<-----------------------|
 | | |
 | RESULT (progress) | |
 |<------------------------| |
 | | |
 | ... | ... |
 | | |
 | CALL (final) | |
 |------------------------>| |
 | | INVOCATION (final) |
 | |----------------------->|
 | | |
 | | YIELD (final) or ERROR |
 | |<-----------------------|
 | | |
 | RESULT (final) or ERROR | |
 |<------------------------| |
 ,--+---. ,--+---. ,--+---.
 |Caller| |Dealer| |Callee|
 `------' `------' `------'

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 100

Because they are part of the same call operation, the request ID is the same in all CALL,

INVOCATION, YIELD, and ERROR messages in the above exchange.

Freezing of Options in Progressive Call Invocations

Except for progress, items in the Options dictionary of the initiating progressive CALL shall be

effective for the entirety of the progressive call request. Only the progress option shall be
considered by the Dealer in subsequent progressive call invocations (within the same overall
request). Except for progress, items in the Details dictionary of corresponding INVOCATION
messages shall be based on the initiating progressive CALL only.

For example, if disclose_me=true was specified in the initiating progressive call, all subsequent
progressive call invocations (within the same call) shall be considered by the Dealer to implictly
have disclose_me=true as well. That is, all INVOCATION messages associated with the overall
request shall contain caller identify information.

Any option besides progress SHOULD be omitted altogether by the Caller in subsequent
progressive call invocations. Not having to repeat (and not being able to change) options is more
in tune with the concept of a media stream where options are set up initially, and the source
(Caller) only needs to keep uploading more data thereafter.

In subsequent call invocations:

Dealers and Callees MUST ignore any option except for progress

Dealers SHOULD NOT propagate any option passed by the Caller, except for progress

Dealers and Callees are responsible for remembering the options of the initiating progressive
CALL.

For reference, here is a list of options that are frozen upon the initial progressive call
invocations:

CALL.Options.disclose_me|bool

CALL.Options.ppt_cipher|string

CALL.Options.ppt_keyid|string

CALL.Options.ppt_scheme|string

CALL.Options.ppt_serializer|string

CALL.Options.receive_progress|bool

CALL.Options.rkey

CALL.Options.runmode|string

CALL.Options.timeout|integer

•

•

•

•

•

•

•

•

•

•

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 101

These rules concerning progressive call invocation options also apply to custom options that are
not part of this specification.

11.3. Call Timeouts
The Call Timeouts feature allows for automatic cancellation of a remote procedure call by the
Dealer or Callee after a specified time duration.

A Caller specifies a timeout by providing

in milliseconds. Automatic call timeouts are deactivated if there is no timeout option, or if its
value is 0.

Dealer-Initiated Timeouts

If the Callee does not support Call Timeouts, a Dealer supporting this feature MUST start a
timeout timer upon receiving a CALL message with a timeout option. The message flow for call

timeouts is identical to Call Canceling, except that there is no CANCEL message that originates

from the Caller. The cancellation mode is implicitly killnowait if the Callee supports call

cancellation, otherwise the cancellation mode is skip.

The error message that is returned to the Caller MUST use wamp.error.timeout as the reason URI.

Callee-Initiated Timeouts

If the Callee supports Call Timeouts, the Dealer MAY propagate the CALL.Options.timeout|integer
option via the INVOCATION message and allow the Callee to handle the timeout logic. If the

operation times out, the Callee MUST return an ERROR message with wamp.error.timeout as the
reason URI.

Callees wanting to handle the timeout logic MAY specify this intention via the
REGISTER.Options.forward_timeout|boolean option. The Dealer, upon receiving a CALL with the

timeout option set, checks if the matching RPC registration had the forward_timeout option set,
then accordingly either forwards the timeout value or handles the timeout logic locally without
forwarding the timeout value.

Dealers MAY choose to override the REGISTER.Options.forward_timeout|boolean option based on
router configuration. For example, if a Dealer is resource-constrained and does not wish to
maintain a queue of pending call timeouts, it may decide to always forward the CALL timeout
option to Callees.

Caller-Initiated Timeouts

 CALL.Options.timeout|integer

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 102

Callers may run their own timeout timer and send a CANCEL message upon timeout. This is
permitted if the Dealer supports Call Canceling and is not considered to be a usage of the Call
Timeouts feature.

Feature Announcement

Support for this feature MUST be announced by Dealers (role := "dealer") and MAY be announced

by Callees (role := "callee") via

If a Callee does not support Call Timeouts, it may optionally announce support for Call
Cancellation via

 HELLO.Details.roles.<role>.features.call_timeout|bool := true

 HELLO.Details.roles.<role>.features.call_canceling|bool := true

11.4. Call Canceling
A Caller might want to actively cancel a call that was issued, but not has yet returned. An
example where this is useful could be a user triggering a long running operation and later
changing his mind or no longer willing to wait.

Feature Announcement

Support for this feature MUST be announced by Callers (role := "caller"), Callees (role := "callee")

and Dealers (role := "dealer") via

Message Flow

The message flow between Callers, a Dealer and Callees for canceling remote procedure calls
involves the following messages:

CANCEL

INTERRUPT

ERROR

 HELLO.Details.roles.<role>.features.call_canceling|bool := true

•

•

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 103

A call may be canceled at the Callee or at the Dealer side. Cancellation behaves differently
depending on the mode:

skip: The pending call is canceled and ERROR is sent immediately back to the caller. No

INTERRUPT is sent to the callee and the result is discarded when received.

kill: INTERRUPT is sent to the callee, but ERROR is not returned to the caller until after the

callee has responded to the canceled call. In this case the caller may receive RESULT or ERROR
depending whether the callee finishes processing the invocation or the interrupt first.
killnowait: The pending call is canceled and ERROR is sent immediately back to the caller.

INTERRUPT is sent to the callee and any response to the invocation or interrupt from the
callee is discarded when received.

If the callee does not support call canceling, then behavior is skip.

Message flow during call canceling when Callee supports this feature and mode is kill

Message flow during call canceling when Callee does not support this feature or mode is skip

•

•

•

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL | |
 | ----------------> |
 | | |
 | | INVOCATION |
 | | ---------------->
 | | |
 | CANCEL | |
 | ----------------> |
 | | |
 | | INTERRUPT |
 | | ---------------->
 | | |
 | | ERROR |
 | | <----------------
 | | |
 | ERROR | |
 | <---------------- |
 ,--+---. ,--+---. ,--+---.
 |Caller| |Dealer| |Callee|
 `------' `------' `------'

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 104

Message flow during call canceling when Callee supports this feature and mode is killnowait

A Caller cancels a remote procedure call initiated (but not yet finished) by sending a CANCEL
message to the Dealer:

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL | |
 | ----------------> |
 | | |
 | | INVOCATION |
 | | ----------------> |
 | | |
 | CANCEL | |
 | ----------------> |
 | | |
 | ERROR | |
 | <---------------- |
 | | |
 | | RESULT (skipped) |
 | | <---------------- |
 | | |
 | | or ERROR (skipped)|
 | | <-----------------
 ,--+---. ,--+---. ,--+---.
 |Caller| |Dealer| |Callee|
 `------' `------' `------'

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL | |
 | ----------------> |
 | | |
 | | INVOCATION |
 | | ---------------->
 | | |
 | CANCEL | |
 | ----------------> |
 | | |
 | ERROR | |
 | <---------------- |
 | | INTERRUPT |
 | | ---------------->
 | | |
 ,--+---. ,--+---. ,--+---.
 |Caller| |Dealer| |Callee|
 `------' `------' `------'

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 105

A Dealer cancels an invocation of an endpoint initiated (but not yet finished) by sending a
INTERRUPT message to the Callee:

Options:

Ignoring Results after Cancel

After the Dealer sends an INTERRUPT when mode="killnowait", any responses from the Callee are

ignored. This means that it is not necessary for the Callee to respond with an ERROR message,
when mode="killnowait", since the Dealer ignores it.

 [CANCEL, CALL.Request|id, Options|dict]

 [INTERRUPT, INVOCATION.Request|id, Options|dict]

 CANCEL.Options.mode|string == "skip" | "kill" | "killnowait"

11.5. Call Re-Routing
A CALLEE might not be able to attend to a call. This may be due to a multitude of reasons
including, but not limited to:

CALLEE is busy handling other requests and is not able to attend
CALLEE has dependency issues which prevent it from being able to fulfil the request
In a HA environment, the Callee knows that it is scheduled to be taken off the HA cluster and
as such should not handle the request.

A unavailable response allows for automatic reroute of a call by the Dealer without the CALLER
ever having to know about it.

When such a situation occurs, the Callee responds to a INVOCATION message with the error uri:

wamp.error.unavailable

When the Dealer receives the wamp.error.unavailable message in response to an INVOCATION, it

will reroute the CALL to another registration according to the rerouting rules of the

invocation_policy of the procedure, as given below.

Feature Announcement

Support for this feature MUST be announced by Callees (role := "callee") and Dealers (role :=
"dealer") via

•
•
•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 106

HELLO.Details.roles.<role>.features.call_reroute|bool := true

Rerouting Rules

The Dealer MUST adhere to the invocation policy of the procedure when rerouting the CALL, while

assuming that the unavailable registration virtually does not exist.

For different invocation policy the Dealer MUST follow:

Invocation
Policy

Operation

single Responds with a wamp.error.no_available_callee error message to the
CALLER

roundrobin Picks the next registration from the Registration Queue of the Procedure

random Picks another registration at random from the Registration Queue of the

Procedure, as long as it is not the same registration

first Picks the registration which was registered after the called registration was
registered

last Picks the registration which was registered right before the called
registration was registered

Table 8

Failure Scenario

In case all available registrations of a Procedure responds with a wamp.error.unavailable for a

CALL, the Dealer MUST respond with a wamp.error.no_available_callee to the CALLER

11.6. Caller Identification
A Caller MAY request the disclosure of its identity (its WAMP session ID) to endpoints of a routed
call via

Example

 CALL.Options.disclose_me|bool := true

 [48, 7814135, {"disclose_me": true}, "com.myapp.echo",
 ["Hello, world!"]]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 107

If above call is issued by a Caller with WAMP session ID 3335656, the Dealer sends an

INVOCATION message to Callee with the Caller's WAMP session ID in INVOCATION.Details.caller:

Example

Note that a Dealer MAY disclose the identity of a Caller even without the Caller having explicitly
requested to do so when the Dealer configuration (for the called procedure) is setup to do so.

Identity Information

When Caller disclosure is allowed for a particular CALL message, the corresponding INVOCATION
message MUST contain an INVOCATION.Details.caller|integer property set to the Caller's session ID.

The following additional properties MAY also be included::

INVOCATION.Details.caller_authid|string

INVOCATION.Details.caller_authrole|string

Feature Announcement

Support for this feature MUST be announced by Callers (role := "caller"), Callees (role := "callee")

and Dealers (role := "dealer") via

Request Identification

A Dealer MAY deny a Caller's request to disclose its identity:

Example

A Callee MAY request the disclosure of caller identity via

Example

 [68, 6131533, 9823526, {"caller": 3335656}, ["Hello, world!"]]

•

•

 HELLO.Details.roles.<role>.features.
 caller_identification|bool := true

 [8, 48, 7814135, "wamp.error.disclose_me.not_allowed"]

 REGISTER.Options.disclose_caller|bool := true

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 108

With the above registration, the registered procedure is called with the caller's sessionID as part
of the call details object.

 [64, 927639114088448, {"disclose_caller":true},
 "com.maypp.add2"]

11.7. Call Trust Levels
A Dealer may be configured to automatically assign trust levels to calls issued by Callers
according to the Dealer configuration on a per-procedure basis and/or depending on the
application defined role of the (authenticated) Caller.

A Dealer supporting trust level will provide

in an INVOCATION message sent to a Callee. The trustlevel 0 means lowest trust, and higher
integers represent (application-defined) higher levels of trust.

Example

In above event, the Dealer has (by configuration and/or other information) deemed the call (and
hence the invocation) to be of trustlevel 2.

Feature Announcement

Support for this feature MUST be announced by Callees (role := "callee") and Dealers (role :=
"dealer") via

 INVOCATION.Details.trustlevel|integer

 [68, 6131533, 9823526, {"trustlevel": 2}, ["Hello, world!"]]

 HELLO.Details.roles.<role>.features.call_trustlevels|bool := true

11.8. Pattern-based Registrations
By default, Callees register procedures with exact matching policy. That is a call will only be
routed to a Callee by the Dealer if the procedure called (CALL.Procedure) exactly matches the

endpoint registered (REGISTER.Procedure).

A Callee might want to register procedures based on a pattern. This can be useful to reduce the
number of individual registrations to be set up or to subscribe to a open set of topics, not known
beforehand by the Subscriber.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 109

If the Dealer and the Callee support pattern-based registrations, this matching can happen by

prefix-matching policy
wildcard-matching policy

Feature Announcement

Support for this feature MUST be announced by Callees (role := "callee") and Dealers (role :=
"dealer") via

•
•

 HELLO.Details.roles.<role>.features.
 pattern_based_registration|bool := true

11.8.1. Prefix Matching

A Callee requests prefix-matching policy with a registration request by setting

Example

When a prefix-matching policy is in place, any call with a procedure that has
REGISTER.Procedure as a prefix will match the registration, and potentially be routed to Callees on
that registration.

In above example, the following calls with CALL.Procedure

com.myapp.myobject1.myprocedure1
com.myapp.myobject1-mysubobject1
com.myapp.myobject1.mysubobject1.myprocedure1
com.myapp.myobject1

will all apply for call routing. A call with one of the following CALL.Procedure

com.myapp.myobject2

 REGISTER.Options.match|string := "prefix"

 [
 64,
 612352435,
 {
 "match": "prefix"
 },
 "com.myapp.myobject1"
]

•

•

•

•

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 110

com.myapp.myobject

will not apply.

•

11.8.2. Wildcard Matching

A Callee requests wildcard-matching policy with a registration request by setting

Wildcard-matching allows to provide wildcards for whole URI components.

Example

In the above registration request, the 3rd URI component is empty, which signals a wildcard in
that URI component position. In this example, calls with CALL.Procedure e.g.

com.myapp.myobject1.myprocedure1
com.myapp.myobject2.myprocedure1

will all apply for call routing. Calls with CALL.Procedure e.g.

com.myapp.myobject1.myprocedure1.mysubprocedure1
com.myapp.myobject1.myprocedure2
com.myapp2.myobject1.myprocedure1

will not apply for call routing.

When a single call matches more than one of a Callees registrations, the call MAY be routed for
invocation on multiple registrations, depending on call settings.

 REGISTER.Options.match|string := "wildcard"

 [
 64,
 612352435,
 {
 "match": "wildcard"
 },
 "com.myapp..myprocedure1"
]

•

•

•

•

•

11.8.3. Design Aspects

No set semantics

Since each Callee's' registrations "stands on its own", there is no set semantics implied by pattern-
based registrations.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 111

E.g. a Callee cannot register to a broad pattern, and then unregister from a subset of that broad
pattern to form a more complex registration. Each registration is separate.

Calls matching multiple registrations

There can be situations, when some call URI matches more then one registration. In this case a
call is routed to one and only one best matched RPC registration, or fails with ERROR
wamp.error.no_such_procedure.

The following algorithm MUST be applied to find a single RPC registration to which a call is
routed:

Check for exact matching registration. If this match exists — (U+2014) use it.
If there are prefix-based registrations, find the registration with the longest prefix match.
Longest means it has more URI components matched, e.g. for call URI a1.b2.c3.d4
registration a1.b2.c3 has higher priority than registration a1.b2. If this match exists —
(U+2014) use it.
If there are wildcard-based registrations, find the registration with the longest portion of URI
components matched before each wildcard. E.g. for call URI a1.b2.c3.d4 registration
a1.b2..d4 has higher priority than registration a1...d4, see below for more complex
examples. If this match exists — (U+2014) use it.
If there is no exact match, no prefix match, and no wildcard match, then Dealer MUST return
ERROR wamp.error.no_such_procedure.

Examples

1.
2.

3.

4.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 112

Concrete procedure called

If an endpoint was registered with a pattern-based matching policy, a Dealer MUST supply the
original CALL.Procedure as provided by the Caller in

to the Callee.

Example

Registered RPCs:
 1. 'a1.b2.c3.d4.e55' (exact),
 2. 'a1.b2.c3' (prefix),
 3. 'a1.b2.c3.d4' (prefix),
 4. 'a1.b2..d4.e5',
 5. 'a1.b2.c33..e5',
 6. 'a1.b2..d4.e5..g7',
 7. 'a1.b2..d4..f6.g7'

Call request RPC URI: 'a1.b2.c3.d4.e55' →
 exact match. Use RPC 1
Call request RPC URI: 'a1.b2.c3.d98.e74' →
 no exact match, single prefix match. Use RPC 2
Call request RPC URI: 'a1.b2.c3.d4.e325' →
 no exact match, 2 prefix matches (2,3), select longest one.
 Use RPC 3
Call request RPC URI: 'a1.b2.c55.d4.e5' →
 no exact match, no prefix match, single wildcard match.
 Use RPC 4
Call request RPC URI: 'a1.b2.c33.d4.e5' →
 no exact match, no prefix match, 2 wildcard matches (4,5),
 but RPC 5 has longer first portion (a1.b2.c33). Use RPC 5
Call request RPC URI: 'a1.b2.c88.d4.e5.f6.g7' →
 no exact match, no prefix match, 2 wildcard matches (6,7),
 both having equal first portions (a1.b2), but RPC 6 has longer
 second portion (d4.e5). Use RPC 6
Call request RPC URI: 'a2.b2.c2.d2.e2' →
 no exact match, no prefix match, no wildcard match.
 Return wamp.error.no_such_procedure

 INVOCATION.Details.procedure

 [
 68,
 6131533,
 9823527,
 {
 "procedure": "com.myapp.procedure.proc1"
 },
 ["Hello, world!"]
]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 113

11.9. Shared Registration
Feature status: alpha

As a default, only a single Callee may register a procedure for a URI.

There are use cases where more flexibility is required. As an example, for an application
component with a high computing load, several instances may run, and load balancing of calls
across these may be desired. As another example, in an application a second or third component
providing a procedure may run, which are only to be called in case the primary component is no
longer reachable (hot standby).

When shared registrations are supported, then the first Callee to register a procedure for a
particular URI MAY determine that additional registrations for this URI are allowed, and what
Invocation Rules to apply in case such additional registrations are made.

This is done through setting

where <invocation_policy> is one of

'single'
'roundrobin'
'random'
'first'
'last'

If the option is not set, 'single' is applied as a default.

With 'single', the Dealer MUST fail all subsequent attempts to register a procedure for the URI
while the registration remains in existence.

With the other values, the Dealer MUST fail all subsequent attempts to register a procedure for
the URI where the value for this option does not match that of the initial registration.

Feature Announcement

Support for this feature MUST be announced by Callees (role := "callee") and Dealers (role :=
"dealer") via

 REGISTER.Options.invoke|string := <invocation_policy>

•
•
•
•
•

 HELLO.Details.roles.<role>.features.
 shared_registration|bool := true

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 114

11.9.1. Load Balancing

For sets of registrations registered using either 'roundrobin' or 'random', load balancing is
performed across calls to the URI.

For 'roundrobin', callees are picked subsequently from the list of registrations (ordered by the
order of registration), with the picking looping back to the beginning of the list once the end has
been reached.

For 'random' a callee is picked randomly from the list of registrations for each call.

11.9.2. Hot Stand-By

For sets of registrations registered using either 'first' or 'last', the first respectively last callee on
the current list of registrations (ordered by the order of registration) is called.

11.10. Sharded Registration
Feature status: sketch

Sharded Registrations are intended to allow calling a procedure which is offered by a sharded
database, by routing the call to a single shard.

Feature Announcement

Support for this feature MUST be announced by Callers (role := "caller"), Callees (role := "callee")

and Dealers (role := "dealer") via

HELLO.Details.roles.<role>.features.sharded_registration|bool := true

11.10.1. "All" Calls

Write me.

11.10.2. "Partitioned" Calls

If CALL.Options.runmode == "partition", then CALL.Options.rkey MUST be present.

The call is then routed to all endpoints that were registered ..

The call is then processed as for "All" Calls.

11.11. Registration Revocation
Feature status: alpha

This feature allows a Dealer to actively revoke a previously granted registration. To achieve this,
the existing UNREGISTERED message is extended as described below.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 115

Feature Announcement

Support for this feature MUST be announced by Callees (role := "callee") and Dealers (role :=
"dealer") via

If the Callee does not support registration_revocation, the Dealer may still revoke a registration to
support administrative functionality. In this case, the Dealer MUST NOT send an UNREGISTERED
message to the Callee. The Callee MAY use the registration meta event
wamp.registration.on_unregister to determine whether a session is removed from a registration.

Extending UNREGISTERED

When revoking a registration, the router has no request ID to reply to. So it's set to zero and
another argument is appended to indicate which registration to revoke. Optionally, a reason why
the registration was revoked is also appended.

where

Details.registration|bool MUST be a previously issued registration ID.

Details.reason|string MAY provide a reason as to why the registration was revoked.

Example

 HELLO.Details.roles.<role>.features.
 registration_revocation|bool := true

 [UNREGISTERED, 0, Details|dict]

•

•

 [67, 0, {"registration": 1293722, "reason": "moving endpoint to other callee"}]

12. Advanced PubSub

12.1. Subscriber Black- and Whitelisting
Subscriber Black- and Whitelisting is an advanced Broker feature where a Publisher is able to
restrict the set of receivers of a published event.

Under normal Publish & Subscriber event dispatching, a Broker will dispatch a published event
to all (authorized) Subscribers other than the Publisher itself. This set of receivers can be further
reduced on a per-publication basis by the Publisher using Subscriber Black- and Whitelisting.

The Publisher can explicitly exclude Subscribers based on WAMP sessionid, authid or authrole.
This is referred to as Blacklisting.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 116

A Publisher may also explicitly define a eligible list of Subscribers based on WAMP sessionid,

authid or authrole. This is referred to as Whitelisting.

Use Cases include the following.

Avoiding Callers from being self-notified

Consider an application that exposes a procedure to update a product price. The procedure
might not only actually update the product price (e.g. in a backend database), but additionally
publish an event with the updated product price, so that all application components get notified
actively of the new price.

However, the application might want to exclude the originator of the product price update (the
Caller of the price update procedure) from receiving the update event - as the originator
naturally already knows the new price, and might get confused when it receives an update the
Caller has triggered himself.

The product price update procedure can use PUBLISH.Options.exclude|list[int] to exclude the
Caller of the procedure.

Note that the product price update procedure needs to know the session ID of the Caller
to be able to exclude him. For this, please see Caller Identification.

A similar approach can be used for other CRUD-like procedures.

Restricting receivers of sensitive information

Consider an application with users that have different authroles, such as "manager" and "staff"
that publishes events with updates to "customers". The topics being published to could be
structured like

The application might want to restrict the receivers of customer updates depending on the
authrole of the user. E.g. a user authenticated under authrole "manager" might be allowed to
receive any kind of customer update, including personal and business sensitive information. A
user under authrole "staff" might only be allowed to receive a subset of events.

The application can publish all customer updates to the same topic
com.example.myapp.customer.<customer ID> and use PUBLISH.Options.eligible_authrole|list[string]
to safely restrict the set of actual receivers as desired.

Feature Definition

 com.example.myapp.customer.<customer ID>

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 117

A Publisher may restrict the actual receivers of an event from the set of Subscribers through the
use of

Blacklisting Options
PUBLISH.Options.exclude|list[int]

PUBLISH.Options.exclude_authid|list[string]

PUBLISH.Options.exclude_authrole|list[string]

Whitelisting Options
PUBLISH.Options.eligible|list[int]

PUBLISH.Options.eligible_authid|list[string]

PUBLISH.Options.eligible_authrole|list[string]

PUBLISH.Options.exclude is a list of integers with WAMP sessionids providing an explicit list of
(potential) Subscribers that won't receive a published event, even though they may be subscribed.
In other words, PUBLISH.Options.exclude is a blacklist of (potential) Subscribers.

PUBLISH.Options.eligible is a list of integers with WAMP WAMP sessionids providing an explicit list
of (potential) Subscribers that are allowed to receive a published event. In other words,
PUBLISH.Options.eligible is a whitelist of (potential) Subscribers.

The exclude_authid, exclude_authrole, eligible_authid and eligible_authrole options work similar, but

not on the basis of WAMP sessionid, but authid and authrole.

An (authorized) Subscriber to topic T will receive an event published to T if and only if all of the
following statements hold true:

if there is an eligible attribute present, the Subscriber's sessionid is in this list

if there is an eligible_authid attribute present, the Subscriber's authid is in this list

if there is an eligible_authrole attribute present, the Subscriber's authrole is in this list

if there is an exclude attribute present, the Subscriber's sessionid is NOT in this list

if there is an exclude_authid attribute present, the Subscriber's authid is NOT in this list

if there is an exclude_authrole attribute present, the Subscriber's authrole is NOT in this list

For example, if both PUBLISH.Options.exclude and PUBLISH.Options.eligible are present, the Broker
will dispatch events published only to Subscribers that are not explicitly excluded in
PUBLISH.Options.exclude and which are explicitly eligible via PUBLISH.Options.eligible.

Example

•
◦
◦
◦

•
◦
◦
◦

1.

2.

3.

4.

5.

6.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 118

The above event will get dispatched to all Subscribers of com.myapp.mytopic1, but not WAMP
sessions with IDs 7891255 or 1245751 (and also not the publishing session).

Example

The above event will get dispatched to WAMP sessions with IDs 7891255 or
1245751 only - but only if those are actually subscribed to the topic com.myapp.mytopic1.

Example

 [
 16,
 239714735,
 {
 "exclude": [
 7891255,
 1245751
]
 },
 "com.myapp.mytopic1",
 [
 "Hello, world!"
]
]

 [
 16,
 239714735,
 {
 "eligible": [
 7891255,
 1245751
]
 },
 "com.myapp.mytopic1",
 [
 "Hello, world!"
]
]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 119

The above event will get dispatched to WAMP sessions with IDs 1245751 or
9912315 only, since 7891255 is excluded - but only if those are actually subscribed
to the topic com.myapp.mytopic1.

Feature Announcement

Support for this feature MUST be announced by Publishers (role := "publisher") and Brokers (role :=
"broker") via

 [
 16,
 239714735,
 {
 "eligible": [
 7891255,
 1245751,
 9912315
],
 "exclude": [
 7891255
]
 },
 "com.myapp.mytopic1",
 [
 "Hello, world!"
]
]

 HELLO.Details.roles.<role>.features.
 subscriber_blackwhite_listing|bool := true

12.2. Publisher Exclusion
By default, a Publisher of an event will not itself receive an event published, even when
subscribed to the Topic the Publisher is publishing to. This behavior can be overridden using this
feature.

To override the exclusion of a publisher from its own publication, the PUBLISH message must
include the following option:

When publishing with PUBLISH.Options.exclude_me := false, the Publisher of the event will receive

that event, if it is subscribed to the Topic published to.

 PUBLISH.Options.exclude_me|bool

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 120

Example

In this example, the Publisher will receive the published event, if it is subscribed to
com.myapp.mytopic1.

Feature Announcement

Support for this feature MUST be announced by Publishers (role := "publisher") and Brokers (role :=
"broker") via

 [
 16,
 239714735,
 {
 "exclude_me": false
 },
 "com.myapp.mytopic1",
 ["Hello, world!"]
]

 HELLO.Details.roles.<role>.features.
 publisher_exclusion|bool := true

12.3. Publisher Identification
A Publisher may request the disclosure of its identity (its WAMP session ID) to receivers of a
published event by setting

Example

If above event is published by a Publisher with WAMP session ID 3335656, the Broker

would send an EVENT message to Subscribers with the Publisher's WAMP session ID in

EVENT.Details.publisher:

Example

 PUBLISH.Options.disclose_me|bool := true

 [16, 239714735, {"disclose_me": true}, "com.myapp.mytopic1",
 ["Hello, world!"]]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 121

Note that a Broker may deny a Publisher's request to disclose its identity:

Example

A Broker may also (automatically) disclose the identity of a Publisher even without the Publisher
having explicitly requested to do so when the Broker configuration (for the publication topic) is
set up to do so.

Additional Identity Information

When publisher disclosure is allowed for a particular PUBLISH message, the corresponding
EVENT message MAY also contain the following additional properties in its Details dictionary:

EVENT.Details.publisher_authid|string

EVENT.Details.publisher_authrole|string

Feature Announcement

Support for this feature MUST be announced by Publishers (role := "publisher"), Brokers (role :=
"broker") and Subscribers (role := "subscriber") via

 [36, 5512315355, 4429313566, {"publisher": 3335656},
 ["Hello, world!"]]

 [8, 16, 239714735, {}, "wamp.error.option_disallowed.disclose_me"]

•

•

 HELLO.Details.roles.<role>.features.
 publisher_identification|bool := true

12.4. Publication Trust Levels
A Broker may be configured to automatically assign trust levels to events published by Publishers
according to the Broker configuration on a per-topic basis and/or depending on the application
defined role of the (authenticated) Publisher.

A Broker supporting trust level will provide

in an EVENT message sent to a Subscriber. The trustlevel 0 means lowest trust, and higher
integers represent (application-defined) higher levels of trust.

Example

 EVENT.Details.trustlevel|integer

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 122

In above event, the Broker has (by configuration and/or other information) deemed the event
publication to be of trustlevel 2.

Feature Announcement

Support for this feature MUST be announced by Subscribers (role := "subscriber") and Brokers

(role := "broker") via

 [36, 5512315355, 4429313566, {"trustlevel": 2},
 ["Hello, world!"]]

 HELLO.Details.roles.<role>.features.
 publication_trustlevels|bool := true

12.5. Pattern-based Subscription
By default, Subscribers subscribe to topics with exact matching policy. That is an event will only
be dispatched to a Subscriber by the Broker if the topic published to (PUBLISH.Topic) exactly

matches the topic subscribed to (SUBSCRIBE.Topic).

A Subscriber might want to subscribe to topics based on a pattern. This can be useful to reduce
the number of individual subscriptions to be set up and to subscribe to topics the Subscriber is
not aware of at the time of subscription, or which do not yet exist at this time.

Let's review the event publication flow. When one peer decides to publish a message to a topic, it
results in a PUBLISH WAMP message with fields for the Publication id, Details dictionary, and,
optionally, the payload arguments.

A given event received by the router from a publisher via a PUBLISH message will match one or
more subscriptions:

zero or one exact subscription
zero or more prefix subscriptions
zero or more wildcard subscriptions

The same published event is then forwarded to subscribers for every matching subscription.
Thus, a given event might be sent multiple times to the same client under different subscriptions.
Every subscription instance, based on a topic URI and some options, has a unique ID. All
subscribers of the same subscription are given the same subscription ID.

•
•
•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 123

If the Broker and the Subscriber support pattern-based subscriptions, this matching can happen
by

prefix-matching policy
wildcard-matching policy

Feature Announcement

Support for this feature MUST be announced by Subscribers (role := "subscriber") and Brokers

(role := "broker") via

 +----------+ +------------+ +----------+
 | | | Exact | |Subscriber|
 | |--Event-->|Subscription|---+--->| peer |
 | | +------------+ | +----------+
 +----------+ | | +------------+ | +----------+
 |Publisher | | Broker | | Wildcard | +--->|Subscriber|
 | peer |--Publication-->| |--Event-->|Subscription|---+--->| peer |
 +----------+ | | +------------+ | +----------+
 | | +------------+ | +----------+
 | | | Prefix | +--->|Subscriber|
 | |--Event-->|Subscription|------->| peer |
 +----------+ +------------+ +----------+

•
•

 HELLO.Details.roles.<role>.features.
 pattern_based_subscription|bool := true

12.5.1. Prefix Matching

A Subscriber requests prefix-matching policy with a subscription request by setting

Example

 SUBSCRIBE.Options.match|string := "prefix"

 [
 32,
 912873614,
 {
 "match": "prefix"
 },
 "com.myapp.topic.emergency"
]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 124

When a prefix-matching policy is in place, any event with a topic that has SUBSCRIBE.Topic as a
prefix will match the subscription, and potentially be delivered to Subscribers on the
subscription.

In the above example, events with PUBLISH.Topic

com.myapp.topic.emergency.11
com.myapp.topic.emergency-low

com.myapp.topic.emergency.category.severe

com.myapp.topic.emergency

will all apply for dispatching. An event with PUBLISH.Topic e.g. com.myapp.topic.emerge will not
apply.

•

•

•

•

12.5.2. Wildcard Matching

A Subscriber requests wildcard-matching policy with a subscription request by setting

Wildcard-matching allows to provide wildcards for whole URI components.

Example

In above subscription request, the 3rd URI component is empty, which signals a wildcard in that
URI component position. In this example, events with PUBLISH.Topic

com.myapp.foo.userevent

com.myapp.bar.userevent

com.myapp.a12.userevent

will all apply for dispatching. Events with PUBLISH.Topic

com.myapp.foo.userevent.bar

 SUBSCRIBE.Options.match|string := "wildcard"

 [
 32,
 912873614,
 {
 "match": "wildcard"
 },
 "com.myapp..userevent"
]

•

•

•

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 125

com.myapp.foo.user

com.myapp2.foo.userevent

will not apply for dispatching.

•

•

12.5.3. Design Aspects

No set semantics

Since each Subscriber's subscription "stands on its own", there is no set semantics implied by
pattern-based subscriptions.

E.g. a Subscriber cannot subscribe to a broad pattern, and then unsubscribe from a subset of that
broad pattern to form a more complex subscription. Each subscription is separate.

Events matching multiple subscriptions

When a single event matches more than one of a Subscriber's subscriptions, the event will be
delivered for each subscription.

The Subscriber can detect the delivery of that same event on multiple subscriptions via
EVENT.PUBLISHED.Publication, which will be identical.

Concrete topic published to

If a subscription was established with a pattern-based matching policy, a Broker MUST supply the
original PUBLISH.Topic as provided by the Publisher in

to the Subscribers.

Example

 EVENT.Details.topic|uri

 [
 36,
 5512315355,
 4429313566,
 {
 "topic": "com.myapp.topic.emergency.category.severe"
 },
 ["Hello, world!"]
]

12.6. Sharded Subscription
Feature status: alpha

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 126

Support for this feature MUST be announced by Publishers (role := "publisher"), Subscribers (role :=
"subscriber") and Brokers (role := "broker") via

Resource keys: PUBLISH.Options.rkey|string is a stable, technical resource key.

E.g. if your sensor has a unique serial identifier, you can use that.

Example

Node keys: SUBSCRIBE.Options.nkey|string is a stable, technical node key.

E.g. if your backend process runs on a dedicated host, you can use its hostname.

Example

 HELLO.Details.roles.<role>.features.shareded_subscriptions|
 bool := true

 [16, 239714735, {"rkey": "sn239019"}, "com.myapp.sensor.sn239019.
 temperature", [33.9]]

 [32, 912873614, {"match": "wildcard", "nkey": "node23"},
 "com.myapp.sensor..temperature"]

12.7. Event History
Instead of complex QoS for message delivery, a Broker may provide Event History. With event
history, a Subscriber is responsible for handling overlaps (duplicates) when it wants "exactly-
once" message processing across restarts.

The event history may be transient, or it may be persistent where it survives Broker restarts.

The Broker implementation may allow for configuration of event history on a per-topic or per-
topic-pattern basis. Such configuration could enable/disable the feature, set the event history
storage location, set parameters for sub-features such as compression, or set the event history
data retention policy.

Event History saves events published to discrete subscriptions, in the chronological order
received by the broker. Let us examine an example.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 127

Subscriptions:

Subscription to exact match 'com.mycompany.log.auth' topic
Subscription to exact match 'com.mycompany.log.basket' topic
Subscription to prefix-based 'com.mycompany.log' topic

Publication messages:

Publication to topic 'com.mycompany.log.auth'. Forwarded as events to subscriptions 1 and 3.
Publication to topic 'com.mycompany.log.basket'. Delivered as event to subscriptions 2 and 3.
Publication to topic 'com.mycompany.log.basket'. Delivered as events to subscriptions 2 and
3.
Publication to topic 'com.mycompany.log.basket'. Delivered as events subscriptions 2 and 3.
Publication to topic 'com.mycompany.log.checkout'. Delivered as an event to subscription 3
only.

Event History:

Event history for subscription 1 contains publication 1 only.
Event history for subscription 2 contains publications 2, 3, and 4.
Event history for subscription 3 contains all publications.

Feature Announcement

A Broker that implements event history must indicate HELLO.roles.broker.features.event_history =
true, must announce the role HELLO.roles.callee, and must provide the meta procedures described
below.

Receiving Event History

A Caller can request message history by calling the Broker meta procedure

With payload:

Arguments = [subscription|id]. The subscription id for which to retrieve event history

ArgumentsKw:

reverse. Boolean. Optional. Traverses events in reverse order of occurrence. The default
is to traverse events in order of occurrence.
limit. Positive integer. Optional. Indicates the maximum number of events to retrieve.
Can be used for pagination.

1.
2.
3.

1.
2.
3.

4.
5.

•
•
•

 wamp.subscription.get_events

•

•

◦

◦

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 128

from_time. RFC3339-formatted timestamp string. Optional. Only include publications

occurring at the given timestamp or after (using >= comparison).

after_time. RFC3339-formatted timestamp string. Optional. Only include publications

occurring after the given timestamp (using > comparison).

before_time. RFC3339-formatted timestamp string. Optional. Only include publications

occurring before the given timestamp (using < comparison).

until_time. RFC3339-formatted timestamp string. Optional. Only include publications

occurring before the given timestamp including date itself (using <= comparison).

topic. WAMP URI. Optional. For pattern-based subscriptions, only include publications to
the specified topic.
from_publication. Positive integer. Optional. Events in the results must have occurred at

or following the event with the given publication|id (includes the event with the given

publication|id in the results).

after_publication. Positive integer. Optional. Events in the results must have occurred

following the event with the given publication_id (excludes the event with the given

publication|id in the results). Useful for pagination: pass the publication|id attribute of the
last event returned in the previous page of results when navigating in order of
occurrence (reverse argument absent or false).

before_publication. Positive integer. Optional. Events in the results must have occurred

previously to the event with the given publication|id (excludes the event with the given

publication|id in the results). Useful for pagination: pass the publication|id attribute of the
last event returned in the previous page of results when navigating in reverse order of
occurrence (reverse=true).

until_publication. Positive integer. Optional. Events in the results must have occurred at or

previously to the event with the given publication|id (includes the event with the given

publication|id in the results).

It is possible to pass multiple options at the same time. In this case they will be treated as
conditions with logical AND. Note that the publication|id event attribute is not ordered as it
belongs to the Global scope. But since events are stored in the order they are received by the
broker, it is possible to find an event with the specified publication|id and then return events
including or excluding the matched one depending on the *_publication filter attributes.

◦

◦

◦

◦

◦

◦

◦

◦

◦

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 129

The arguments payload field returned by the above RPC uses the same schema: an array of Event
objects containing an additional timestamp string attribute in RFC3339 format. It can also be an
empty array in the case where there were no publications to the specified subscription, or all
events were filtered out by the specified criteria. Additional general information about the query
may be returned via the argumentsKw payload field.

Clients should not rely on timestamps being unique and monotonic. When events occur in quick
succession, it's possible for some of them to have the same timestamp. When a router in an IoT
system is deployed off-grid and is not synchronized to an NTP server, it's possible for the
timestamps to jump backwards when the router's wall clock time or time zone is manually
adjusted.

In cases where the events list is too large to send as a single RPC result, router implementations
may provide additional options, such as pagination or returning progressive results.

As the Event History feature operates on subscription|id, there can be situations when there are
not yet any subscribers to a topic of interest, but publications to the topic occur. In this situation,
the Broker cannot predict that events under that topic should be stored. If the Broker
implementation allows configuration on a per-topic basis, it may overcome this situations by
preinitializing history-enabled topics with "dummy" subscriptions even if there are not yet any
real subscribers to those topics.

Sometimes, a client may not be willing to subscribe to a topic just for the purpose of obtaining a
subscription id. In that case a client may use other Subscriptions Meta API RPC for retrieving
subscription IDs by topic URIs if the router supports it.

Security Aspects

TODO/FIXME: This part of Event History needs more discussion and clarification. But at least
provides some basic information to take into account.

 [
 {
 "timestamp": "yyyy-MM-ddThh:mm:ss.SSSZ", // string with event date/time in RFC3339
format
 "subscription": 2342423, // The subscription ID of the event
 "publication": 32445235, // The original publication ID of the event
 "details": {}, // The original details of the event
 "args": [], // The original list arguments payload of the event. May be ommited
 "kwargs": {} // The original key-value arguments payload of the event. May be ommited
 }
]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 130

https://www.ietf.org/rfc/rfc3339.txt

In order to request event history, a peer must be allowed to subscribe to a desired subscription
first. Thus, if a peer cannot subscribe to a topic resulting in a subscription, it means that it cannot
receive events history for that topic either. To sidestep this problem, a peer must be allowed to
call related meta procedures for obtaining the event history as described above. Prohibited Event
History meta procedure calls must fail with the wamp.error.not_authorized error URI.

Original publications may include additional options, such as black-white-listing that triggers
special event processing. These same rules must also apply to event history requests. For
example, if the original publication contains eligible_authrole = 'admin', but the request for history

came from a peer with authrole = 'user', then even if user is authorized to subscribe to the topic
(and thus is authorized to ask for event history), this publication must be filtered out from the
results of this specific request, by the router side.

The black-white-listing feature also allows the filtering of event delivery on a session ID basis. In
the context of event history, this can result in unexpected behaviour: session ids are generated
randomly at runtime for every session establishment, so newly connected sessions asking for
event history may receive events that were originally excluded, or, vice versa, may not receive
expected events due to session ID mismatch. To prevent this unexpected behaviour, all events
published with Options.exclude|list[int] or Options.eligible|list[int] should be ignored by the Event
History mechanism and not be saved at all.

Finally, Event History should only filter according to attributes that do not change during the run
time of the router, which are currently authrole and authid. Filtering based on ephemeral

attributes like session ID – (U+2013) and perhaps other future custom attributes – (U+2013) should
result in the event not being stored in the history at all, to avoid unintentional leaking of event
information.

12.8. Event Retention
Event Retention is where a particular topic has an event associated with it which is delivered
upon an opting-in client subscribing to the topic.

It can be used for topics that generally have single or very few Publishers notifying Subscribers
of a single updating piece of data -- for example, a topic where a sensor publishes changes of
temperature & humidity in a data center. It may do this every time the data changes (making the
time between updates potentially very far apart), which causes an issue for new Subscribers who
may need the last-known value upon connection, rather than waiting an unknown period of time
until it is updated. Event Retention covers this use case by allowing the Publisher to mark a event
as 'retained', bound to the topic it was sent to, which can be delivered upon a new client
subscription that asks for it. It is similar to Event History, but allows the publisher to decide what
the most important recent event is on the topic, even if other events are being delivered.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 131

A Broker that advertises support MAY provide event retention on topics it provides. This event
retention SHOULD be provided on a best-effort basis, and MUST NOT be interpreted as
permanent or reliable storage by clients. This event retention is limited to one event that all
subscribers would receive, and MAY include other supplemental events that have limited
distribution (for example, a event published with subscriber black/whitelisting).

A Publisher can request storage of a new Retained Event by setting Publish.Options.retain|bool to

true. Lack of the key in Publish.Options MUST be interpreted as a false value. A Broker MAY

decline to provide event retention on certain topics by ignoring the Publish.Options.retain value.
Brokers that allow event retention on the given topic MUST set the topic Retained Event to this if
it were eligible to be published on the topic.

Subscribers may request access to the Retained Event by setting Subscribe.Options.get_retained|
bool to true. Lack of the key in Subscribe.Options MUST be interpreted as a false value. When they
opt-in to receiving the Retained Event, the Broker MUST send the Subscriber the most recent
Retained Event that they would have received if they were subscribing when it was published.
The Broker MUST NOT send the Subscriber a Retained Event that they would not be eligible to
receive if they were subscribing when it was published. The Retained Event, as sent to the
subscribing client, MUST have Event.Details.retained|bool set to true, to inform subscribers that it
is not an immediately new message.

Feature Announcement

Support for this feature MUST be announced by Brokers (role := "broker") via

 Welcome.Details.roles.broker.features.event_retention|bool := true

12.9. Subscription Revocation
Feature status: alpha

This feature allows a Broker to actively revoke a previously granted subscription. To achieve this,
the existing UNSUBSCRIBED message is extended as described below.

Feature Announcement

Support for this feature MUST be announced by Subscribers (role := "subscriber") and Brokers
(role := "broker") via

 HELLO.Details.roles.<role>.features.
 subscription_revocation|bool := true

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 132

If the Subscriber does not support subscription_revocation, the Broker MAY still revoke a
subscription to support administrative functionality. In this case, the Broker MUST NOT send an
UNSUBSCRIBED message to the Subscriber. The Subscriber MAY use the subscription meta event
wamp.subscription.on_unsubscribe to determine whether a session is removed from a
subscription.

Extending UNSUBSCRIBED

When revoking a subscription, the router has no request ID to reply to. So it's set to zero and
another argument is appended to indicate which subscription to revoke. Optionally, a reason
why the subscription was revoked is also appended.

where

Details.subscription|bool MUST be a previously issued subscription ID.

Details.reason|string MAY provide a reason as to why the subscription was revoked.

Example

 [UNSUBSCRIBED, 0, Details|dict]

•

•

 [35, 0, {"subscription": 1293722, "reason": "no longer authorized"}]

12.10. Session Testament
When a WAMP client disconnects, or the WAMP session is destroyed, it may want to notify other
subscribers or publish some fixed data. Since a client may disconnect uncleanly, this can't be
done reliably by them. A Testament, however, set on the server, can be reliably sent by the Broker
once either the WAMP session has detached or the client connection has been lost, and allows
this functionality. It can be triggered when a Session is either detached (the client has
disconnected from it, or frozen it, in the case of Session Resumption) or destroyed (when the
WAMP session no longer exists on the server).

This allows clients that otherwise would not be able to know when other clients disconnect get a
notification (for example, by using the WAMP Session Meta API) with a format the disconnected
client chose.

Feature Announcement

Support for this feature MUST be announced by Dealers (role := "dealer") via

 HELLO.Details.roles.dealer.features.
 testament_meta_api|bool := true

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 133

Testament Meta Procedures

A Client can call the following procedures to set/flush Testaments:

wamp.session.add_testament to add a Testament which will be published on a particular topic
when the Session is detached or destroyed.
wamp.session.flush_testaments to remove the Testaments for that Session, either for when it is
detached or destroyed.

wamp.session.add_testament

Adds a new testament:

Positional arguments

topic|uri - the topic to publish the event on

args|list - positional arguments for the event

kwargs|dict - keyword arguments for the event

Keyword arguments

publish_options|dict - options for the event when it is published -- see Publish.Options. Not all

options may be honoured (for example, acknowledge). By default, there are no options.

scope|string - When the testament should be published. Valid values are detached (when the

WAMP session is detached, for example, when using Event Retention) or destroyed (when the

WAMP session is finalized and destroyed on the Broker). Default MUST be destroyed.

wamp.session.add_testament does not return a value.

wamp.session.flush_testaments

Removes testaments for the given scope:

Keyword arguments

scope|string - Which set of testaments to be removed. Valid values are the same as

wamp.session.add_testament, and the default MUST be destroyed.

wamp.session.flush_testaments does not return a value.

Testaments in Use

•

•

1.

2.

3.

1.

2.

1.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 134

A Client that wishes to send some form of data when their Session ends unexpectedly or their
Transport becomes lost can set a testament using the WAMP Testament Meta API, when a Router
supports it. For example, a client may call add_testament (this example uses the implicit scope
option of destroyed):

The Router will then store this information on the WAMP Session, either in a detached or

destroyed bucket, in the order they were added. A client MUST be able to set multiple testaments
per-scope. If the Router does not support Session Resumption (therefore removing the distinction
between a detached and destroyed session), it MUST still use these two separate buckets to allow
wamp.session.flush_testaments to work.

When a Session is detached, the Router will inspect it for any Testaments in the detached scope,
and publish them in the order that the Router received them, on the specified topic, with the
specified arguments, keyword arguments, and publish options. The Router MAY ignore publish
options that do not make sense for a Testament (for example, acknowledged publishes).

When a Session is going to be destroyed, the Router will inspect it for any Testaments in the
destroyed scope, and publish them in the same way as it would for the detached scope, in the
order that they were received.

A Router that does not allow Session Resumption MUST send detached-scope Testaments before

destroyed-scope Testaments.

A Client can also clear testaments if the information is no longer relevant (for example, it is
shutting down completely cleanly). For example, a client may call wamp.session.flush_testaments:

The Router will then flush all Testaments stored for the given scope.

yield self.call('wamp.session.add_testament',
 'com.myapp.mytopic', ['Seeya!'], {'my_name': 'app1'})

yield self.call('wamp.session.flush_testaments', scope='detached')
yield self.call('wamp.session.flush_testaments', scope='destroyed')

13. Authentication Methods
Authentication is a complex area. Some applications might want to leverage authentication
information coming from the transport underlying WAMP, e.g. HTTP cookies or TLS certificates.

Some transports might imply trust or implicit authentication by their very nature, e.g. Unix
domain sockets with appropriate file system permissions in place.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 135

Other application might want to perform their own authentication using external mechanisms
(completely outside and independent of WAMP).

Some applications might want to perform their own authentication schemes by using basic
WAMP mechanisms, e.g. by using application-defined remote procedure calls.

And some applications might want to use a transport independent scheme, nevertheless
predefined by WAMP.

WAMP-level Authentication

The message flow between Clients and Routers for establishing and tearing down sessions MAY
involve the following messages which authenticate a session:

CHALLENGE

AUTHENTICATE

Concrete use of CHALLENGE and AUTHENTICATE messages depends on the specific authentication
method.

See WAMP Challenge-Response Authentication or ticket authentication for the use in these
authentication methods.

If two-factor authentication is desired, then two subsequent rounds of CHALLENGE and RESPONSE
may be employed.

CHALLENGE

An authentication MAY be required for the establishment of a session. Such requirement MAY be
based on the Realm the connection is requested for.

1.

2.

 ,------. ,------.
 |Client| |Router|
 `--+---' `--+---'
 | HELLO |
 | ---------------->
 | |
 | CHALLENGE |
 | <----------------
 | |
 | AUTHENTICATE |
 | ---------------->
 | |
 | WELCOME or ABORT|
 | <----------------
 ,--+---. ,--+---.
 |Client| |Router|
 `------' `------'

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 136

To request authentication, the Router MUST send a CHALLENGE message to the Endpoint.

AUTHENTICATE

In response to a CHALLENGE message, the Client MUST send an AUTHENTICATE message.

If the authentication succeeds, the Router MUST send a WELCOME message, else it MUST send an

ABORT message.

Transport-level Authentication

Cookie-based Authentication

When running WAMP over WebSocket, the transport provides HTTP client cookies during the
WebSocket opening handshake. The cookies can be used to authenticate one peer (the client)
against the other (the server). The other authentication direction cannot be supported by cookies.

This transport-level authentication information may be forwarded to the WAMP level within
HELLO.Details.transport.auth|any in the client-to-server direction.

TLS Certificate Authentication

When running WAMP over a TLS (either secure WebSocket or raw TCP) transport, a peer may
authenticate to the other via the TLS certificate mechanism. A server might authenticate to the
client, and a client may authenticate to the server (TLS client-certificate based authentication).

This transport-level authentication information may be forwarded to the WAMP level within
HELLO.Details.transport.auth|any in both directions (if available).

 [CHALLENGE, AuthMethod|string, Extra|dict]

 [AUTHENTICATE, Signature|string, Extra|dict]

13.1. Ticket-based Authentication
With Ticket-based authentication, the client needs to present the server an authentication "ticket"
- some magic value to authenticate itself to the server.

This "ticket" could be a long-lived, pre-agreed secret (e.g. a user password) or a short-lived
authentication token (like a Kerberos token). WAMP does not care or interpret the ticket
presented by the client.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 137

Caution: This scheme is extremely simple and flexible, but the resulting security may be
limited. E.g., the ticket value will be sent over the wire. If the transport WAMP is running
over is not encrypted, a man-in-the-middle can sniff and possibly hijack the ticket. If the
ticket value is reused, that might enable replay attacks.

A typical authentication begins with the client sending a HELLO message specifying the ticket
method as (one of) the authentication methods:

The HELLO.Details.authmethods|list is used by the client to announce the authentication methods

it is prepared to perform. For Ticket-based, this MUST include "ticket".

The HELLO.Details.authid|string is the authentication ID (e.g. username) the client wishes to
authenticate as. For Ticket-based authentication, this MUST be provided.

If the server is unwilling or unable to perform Ticket-based authentication, it'll either skip
forward trying other authentication methods (if the client announced any) or send an ABORT
message.

If the server is willing to let the client authenticate using a ticket and the server recognizes the
provided authid, it'll send a CHALLENGE message:

The client will send an AUTHENTICATE message containing a ticket:

The server will then check if the ticket provided is permissible (for the authid given).

If the authentication succeeds, the server will finally respond with a WELCOME message:

 [1, "realm1",
 {
 "roles": ...,
 "authmethods": ["ticket"],
 "authid": "joe"
 }
]

 [4, "ticket", {}]

 [5, "secret!!!", {}]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 138

where

authid|string: The authentication ID the client was (actually) authenticated as.

authrole|string: The authentication role the client was authenticated for.

authmethod|string: The authentication method, here "ticket"

authprovider|string: The actual provider of authentication. For Ticket-based authentication,

this can be freely chosen by the app, e.g. static or dynamic.

The WELCOME.Details again contain the actual authentication information active. If the

authentication fails, the server will response with an ABORT message.

 [2, 3251278072152162,
 {
 "authid": "joe",
 "authrole": "user",
 "authmethod": "ticket",
 "authprovider": "static",
 "roles": ...
 }
]

1.

2.

3.

4.

13.2. Challenge Response Authentication
WAMP Challenge-Response ("WAMP-CRA") authentication is a simple, secure authentication
mechanism using a shared secret. The client and the server share a secret. The secret never
travels the wire, hence WAMP-CRA can be used via non-TLS connections. The actual pre-sharing
of the secret is outside the scope of the authentication mechanism.

A typical authentication begins with the client sending a HELLO message specifying the wampcra
method as (one of) the authentication methods:

The HELLO.Details.authmethods|list is used by the client to announce the authentication methods

it is prepared to perform. For WAMP-CRA, this MUST include "wampcra".

The HELLO.Details.authid|string is the authentication ID (e.g. username) the client wishes to
authenticate as. For WAMP-CRA, this MUST be provided.

 [1, "realm1",
 {
 "roles": ...,
 "authmethods": ["wampcra"],
 "authid": "peter"
 }
]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 139

If the server is unwilling or unable to perform WAMP-CRA authentication, it MAY either skip
forward trying other authentication methods (if the client announced any) or send an ABORT
message.

If the server is willing to let the client authenticate using WAMP-CRA, and the server recognizes
the provided authid, it MUST send a CHALLENGE message:

The CHALLENGE.Details.challenge|string is a string the client needs to create a signature for. The
string MUST BE a JSON serialized object which MUST contain:

authid|string: The authentication ID the client will be authenticated as when the
authentication succeeds.
authrole|string: The authentication role the client will be authenticated as when the
authentication succeeds.
authmethod|string: The authentication methods, here "wampcra"

authprovider|string: The actual provider of authentication. For WAMP-CRA, this can be freely

chosen by the app, e.g. userdb.

nonce|string: A random value.

timestamp|string: The UTC timestamp (ISO8601 format) the authentication was started, e.g.
2014-06-22T16:51:41.643Z.

session|int: The WAMP session ID that will be assigned to the session once it is authenticated
successfully.

The client needs to compute the signature as follows:

That is, compute the HMAC-SHA256 using the shared secret over the challenge.

After computing the signature, the client will send an AUTHENTICATE message containing the
signature, as a base64-encoded string:

 [4, "wampcra",
 {
 "challenge": "{ \"nonce\": \"LHRTC9zeOIrt_9U3\",
 \"authprovider\": \"userdb\", \"authid\": \"peter\",
 \"timestamp\": \"2014-06-22T16:36:25.448Z\",
 \"authrole\": \"user\", \"authmethod\": \"wampcra\",
 \"session\": 3251278072152162}"
 }
]

1.

2.

3.

4.

5.

6.

7.

 signature := HMAC[SHA256]_{secret} (challenge)

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 140

The server will then check if

the signature matches the one expected
the AUTHENTICATE message was sent in due time

If the authentication succeeds, the server will finally respond with a WELCOME message:

The WELCOME.Details again contain the actual authentication information active.

If the authentication fails, the server will response with an ABORT message.

Server-side Verification

The challenge sent during WAMP-CRA contains

random information (the nonce) to make WAMP-CRA robust against replay attacks

timestamp information (the timestamp) to allow WAMP-CRA timeout on authentication
requests that took too long
session information (the session) to bind the authentication to a WAMP session ID

all the authentication information that relates to authorization like authid and authrole

Three-legged Authentication

The signing of the challenge sent by the server usually is done directly on the client. However,
this is no strict requirement.

E.g. a client might forward the challenge to another party (hence the "three-legged") for creating
the signature. This can be used when the client was previously already authenticated to that
third party, and WAMP-CRA should run piggy packed on that authentication.

The third party would, upon receiving a signing request, simply check if the client is already
authenticated, and if so, create a signature for WAMP-CRA.

 [5, "gir1mSx+deCDUV7wRM5SGIn/+R/ClqLZuH4m7FJeBVI=", {}]

•
•

 [2, 3251278072152162,
 {
 "authid": "peter",
 "authrole": "user",
 "authmethod": "wampcra",
 "authprovider": "userdb",
 "roles": ...
 }
]

1.

2.

3.

4.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 141

In this case, the secret is actually shared between the WAMP server who wants to authenticate
clients using WAMP-CRA and the third party server, who shares a secret with the WAMP server.

This scenario is also the reason the challenge sent with WAMP-CRA is not simply a random value,
but a JSON serialized object containing sufficient authentication information for the third party
to check.

Password Salting

WAMP-CRA operates using a shared secret. While the secret is never sent over the wire, a shared
secret often requires storage of that secret on the client and the server - and storing a password
verbatim (unencrypted) is not recommended in general.

WAMP-CRA allows the use of salted passwords following the PBKDF2 key derivation scheme.
With salted passwords, the password itself is never stored, but only a key derived from the
password and a password salt. This derived key is then practically working as the new shared
secret.

When the password is salted, the server will during WAMP-CRA send a CHALLENGE message
containing additional information:

The CHALLENGE.Details.salt|string is the password salt in use. The CHALLENGE.Details.keylen|int and

CHALLENGE.Details.iterations|int are parameters for the PBKDF2 algorithm.

 [4, "wampcra",
 {
 "challenge": "{ \"nonce\": \"LHRTC9zeOIrt_9U3\",
 \"authprovider\": \"userdb\", \"authid\": \"peter\",
 \"timestamp\": \"2014-06-22T16:36:25.448Z\",
 \"authrole\": \"user\", \"authmethod\": \"wampcra\",
 \"session\": 3251278072152162}",
 "salt": "salt123",
 "keylen": 32,
 "iterations": 1000
 }
]

13.3. Salted Challenge Response Authentication
The WAMP Salted Challenge Response Authentication Mechanism ("WAMP-SCRAM"), is a
password-based authentication method where the shared secret is neither transmitted nor
stored as cleartext. WAMP-SCRAM is based on RFC5802 (Salted Challenge Response Authentication
Mechanism) and RFC7677 (SCRAM-SHA-256 and SCRAM-SHA-256-PLUS).

WAMP-SCRAM supports the Argon2 (draft-irtf-cfrg-argon2) password-based key derivation
function, a memory-hard algorithm intended to resist cracking on GPU hardware. PBKDF2
(RFC2898) is also supported for applications that are required to use primitives currently
approved by cryptographic standards.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 142

http://en.wikipedia.org/wiki/PBKDF2
https://tools.ietf.org/html/rfc5802
https://tools.ietf.org/html/rfc7677
https://datatracker.ietf.org/doc/draft-irtf-cfrg-argon2/
https://tools.ietf.org/html/rfc2898

Security Considerations

With WAMP-SCRAM, if the authentication database is stolen, an attacker cannot impersonate a
user unless they guess the password offline by brute force.

In the event that the server's authentication database is stolen, and the attacker either
eavesdrops on one authentication exchange or impersonates a server, the attacker gains the
ability to impersonate that particular user on that server. If the same salt is used on other
servers, the attacker would gain the ability to impersonate that user on all servers using the
same salt. That's why it's important to use a per-user random salt.

An eavesdropper that captures a user authentication exchange has enough information to mount
an offline, brute-force dictionary attack for that particular user. If passwords are sufficiently
strong, the cost/time needed to crack a password becomes prohibitive.

Note that when HTML/JavaScript assets are served to a web browser, WAMP-SCRAM does not
safeguard against a man-in-the-middle tampering with those assets. Those assets could be
tampered with in a way that captures the user's password and sends it to the attacker.

In light of the above security concerns, a secure TLS transport is therefore advised to prevent
such attacks. The channel binding feature of SCRAM can be used to ensure that the TLS
endpoints are the same between client and router.

Deviations from RFC5802

To simplify parsing, SCRAM attributes in the authentication exchange messages are encoded
as members of the Options/Details objects without escaping the , and = characters. However,

the AuthMessage used to compute the client and server signatures DOES use the exact syntax
specified in RFC5802, section 7. This makes it possible to use existing test vectors to verify
WAMP-SCRAM implementations.
Hashing based on the weaker SHA-1 specified in RFC5802 is intentionally not supported by
WAMP-SCRAM, in favor of the stronger SHA-256 specified in RFC7677.
The Argon2 key derivation function MAY be used instead of PBKDF2.
Nonces are required to be base64-encoded, which is stricter than the printable syntax
specification of RFC5802.
The "y" channel binding flag is not used as there is currently no standard way for WAMP
routers to announce channel binding capabilities.
The use of authzid for user impersonation is not supported.

authmethod Type String

"wamp-scram" SHALL be used as the authmethod type string for WAMP-SCRAM authentication.
Announcement by routers of WAMP-SCRAM support is outside the scope of this document.

Base64 encoding

1.

2.

3.
4.

5.

6.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 143

https://tools.ietf.org/html/rfc5802#section-7
https://tools.ietf.org/html/rfc5802
https://tools.ietf.org/html/rfc7677
https://datatracker.ietf.org/doc/draft-irtf-cfrg-argon2
https://tools.ietf.org/html/rfc5802

Base64 encoding of octet strings is restricted to canonical form with no whitespace, as defined in
RFC4648 (The Base16, Base32, and Base64 Data Encodings).

Nonces

In WAMP-SCRAM, a nonce (number used once) is a base64-encoded sequence of random octets. It
SHOULD be of sufficient length to make a replay attack unfeasible. A length of 16 octets (128 bits)
is recommended for each of the client and server-generated nonces.

See RFC4086 (Randomness Requirements for Security) for best practices concerning randomness.

Salts

A salt is a base64-encoded sequence of random octets.

To prevent rainbow table attacks in the event of database theft, the salt MUST be generated
randomly by the server for each user. The random salt is stored with each user record in the
authentication database.

Username/Password String Normalization

Username and password strings SHALL be normalized according to the SASLprep profile
described in RFC4013, using the stringprep algorithm described in RFC3454.

While SASLprep preserves the case of usernames, the server MAY choose to perform case
insensitive comparisons when searching for a username in the authentication database.

Channel Binding

Channel binding is a feature that allows a higher layer to establish that the other end of an
underlying secure channel is bound to its higher layer counterpart. See RFC5056 (On the Use of
Channel Bindings) for an in-depth discussion.

RFC5929 defines binding types for use with TLS transports, of which tls-unique and tls-server-end-
point are applicable for WAMP-SCRAM. For each channel binding type, there is a corresponding
definition of the channel binding data that must be sent in response to the authentication
challenge.

Negotiation and announcement of channel binding is outside the scope of this document.
RFC5929 section 6 recommends that application protocols use tls-unique exclusively, except
perhaps where server-side proxies are commonly deployed.

Note that WAMP-SCRAM channel binding is not generally possible with web browser clients due
to the lack of a suitable API for this purpose.

The tls-unique Channel Binding Type

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 144

https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc4086
https://tools.ietf.org/html/rfc4013
https://tools.ietf.org/html/rfc3454
https://tools.ietf.org/html/rfc5056
https://tools.ietf.org/html/rfc5929
https://tools.ietf.org/html/rfc5929#section-6

The tls-unique channel binding type allows the WAMP layer to establish that the other peer is
authenticating over the same, unique TLS connection. The channel binding data for this type
corresponds to the bytes of the first TLS Finished message, as described in RFC5929, section 3.
RFC5929 section 10.2 addresses the concern of disclosing this data over the TLS channel (in short,
the TLS Finished message would already be visible to eavesdroppers).

To safeguard against the triple handshake attack described in RFC7627, this channel binding type
MUST be used over a TLS channel that uses the extended master secret extension, or over a TLS
channel where session resumption is not permitted.

The tls-server-end-point Channel Binding Type

The tls-server-end-point channel binding type allows the WAMP layer to establish that the other
peer is authenticating over a TLS connection to a server having been issued a Public Key
Infrastructure Certificate. The channel binding data for this type is a hash of the TLS server's
certificate, computed as described in RFC5929, section 4.1. The certificate is hashed to
accommodate memory-constrained implementations.

Authentication Exchange

WAMP-SCRAM uses a single round of challenge/response pairs after the client authentication
request and before the authentication outcome.

The mapping of RFC5802 messages to WAMP messages is as follows:

SCRAM Message WAMP Message

client-first-message HELLO

server-first-message CHALLENGE

client-final-message AUTHENTICATE

server-final-message with verifier WELCOME

server-final-message with server-error ABORT

Table 9

Initial Client Authentication Message

WAMP-SCRAM authentication begins with the client sending a HELLO message specifying the

wamp-scram method as (one of) the authentication methods:

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 145

https://tools.ietf.org/html/rfc5929#section-3
https://tools.ietf.org/html/rfc5929#section-10.2
https://tools.ietf.org/html/rfc7627
https://tools.ietf.org/html/rfc5929#section-4.1

where:

authid|string: The identity of the user performing authentication. This corresponds to the

username parameter in RFC5802.

authextra.nonce|string: A base64-encoded sequence of random octets, generated by the client.
See Nonces.
authextra.channel_binding|string: Optional string containing the desired channel binding type.
See Channel Bindings.

Upon receiving the HELLO message, the server MUST terminate the authentication process by

sending an ABORT message under any of the following circumstances:

The server does not support the WAMP-SCRAM authmethods, and there are no other methods

left that the server supports for this authid.

The the server does not support the requested channel_binding type.

(Optional) The server does not recognize the given authid. In this case, the server MAY

proceed with a mock CHALLENGE message to avoid leaking information on the existence of

usernames. This mock CHALLENGE SHOULD contain a generated salt value that is always the

same for a given authid, otherwise an attacker may discover that the user doesn't actually
exist.

Initial Server Authentication Message

If none of the above failure conditions apply, and the server is ready to let the client authenticate
using WAMP-SCRAM, then it SHALL send a CHALLENGE message:

 [1, "realm1",
 {
 "roles": ...,
 "authmethods": ["wamp-scram"],
 "authid": "user",
 "authextra":
 {
 "nonce": "egVDf3DMJh0=",
 "channel_binding": null
 }

 }
]

1.

2.

3.

•

•

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 146

where:

nonce|string: A server-generated nonce that is appended to the client-generated nonce sent in

the previous HELLO message. See Nonces.

salt|string: The base64-encoded salt for this user, to be passed to the key derivation function.
This value is stored with each user record in the authentication database. See Salts.
kdf: The key derivation function (KDF) used to hash the password. This value is stored with
each user record in the authentication database. See Key Derivation Functions.
iterations|integer: The execution time cost factor to use for generating the SaltedPassword
hash. This value is stored with each user record in the authentication database.
memory|integer: The memory cost factor to use for generating the SaltedPassword hash. This
is only used by the Argon2 key derivation function, where it is stored with each user record
in the authentication database.

The client MUST respond with an ABORT message if CHALLENGE.Details.nonce does not begin with

the client nonce sent in HELLO.Details.nonce.

The client SHOULD respond with an ABORT message if it detects that the cost parameters are
unusually low. Such low-cost parameters could be the result of a rogue server attempting to
obtain a weak password hash that can be easily cracked. What constitutes unusually low
parameters is implementation-specific and is not covered by this document.

Final Client Authentication Message

Upon receiving a valid CHALLENGE message, the client SHALL respond with an AUTHENTICATE
message:

 [4, "wamp-scram",
 {
 "nonce": "egVDf3DMJh0=SBmkFIh7sSo=",
 "salt": "aBc+fx0NAVA=",
 "kdf": "pbkdf2",
 "iterations": 4096,
 "memory": null
 }
]

1.

2.

3.

4.

5.

 [5, "dHzbZapWIk4jUhN+Ute9ytag9zjfMHgsqmmiz7AndVQ=",
 {
 "nonce": "egVDf3DMJh0=SBmkFIh7sSo=",
 "channel_binding": null,
 "cbind_data": null
 }
]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 147

where:

Signature|string argument: The base64-encoded ClientProof, computed as described in the
SCRAM-Algorithms section.
nonce|string: The concatenated client-server nonce from the previous CHALLENGE message.

channel_binding|string: Optional string containing the channel binding type that was sent in

the original HELLO message.

cbind_data|string: Optional base64-encoded channel binding data. MUST be present if and

only if channel_binding is not null. The format of the binding data is dependent on the binding
type. See Channel Binding.

Upon receiving the AUTHENTICATE message, the server SHALL then check that:

The AUTHENTICATE message was received in due time.

The ClientProof passed via the Signature|string argument is validated against the StoredKey
and ServerKey stored in the authentication database. See SCRAM Algorithms.

nonce matches the one previously sent via CHALLENGE.

The channel_binding matches the one sent in the HELLO message.

The cbind_data sent by the client matches the channel binding data that the server sees on its
side of the channel.

Final Server Authentication Message - Success

If the authentication succeeds, the server SHALL finally respond with a WELCOME message:

where:

authid|string: The authentication ID the client was actually authenticated as.

1.

2.

3.

4.

•

•

•

•

•

 [2, 3251278072152162,
 {
 "authid": "user",
 "authrole": "frontend",
 "authmethod": "wamp-scram",
 "authprovider": "static",
 "roles": ...,
 "authextra":
 {
 "verifier":
 "v=6rriTRBi23WpRR/wtup+mMhUZUn/dB5nLTJRsjl95G4="
 }
 }
]

1.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 148

authrole|string: The authentication role the client was authenticated for.

authmethod|string: The authentication method, here "wamp-scram".

authprovider|string: The actual provider of authentication. For WAMP-SCRAM authentication,
this can be freely chosen by the app, e.g. static or dynamic.
authextra.verifier|string: The base64-encoded ServerSignature, computed as described in the
SCRAM Algorithms section.

The client SHOULD check the verifier for mutual authentication, terminating the session if
invalid.

Final Server Authentication Message - Failure

If the authentication fails, the server SHALL respond with an ABORT message.

The server MAY include a SCRAM-specific error string in the ABORT message as a Details.scram
attribute. SCRAM error strings are listed in RFC5802, section 7, under server-error-value.

SCRAM Algorithms

This section is non-normative.

RFC5802 specifies the algorithms used to compute the ClientProof, ServerSignature, ServerKey, and

StoredKey values referenced by this document. Those algorithms are summarized here in
pseudocode for reference.

Notation

"=": The variable on the left-hand side is the result of the expression on the right-hand side.

"+": String concatenation.

IfNull(attribute, value, else): If the given attribute is absent or null, evaluates to the given value,

otherwise evaluates to the given else value.

Decimal(integer): The decimal string representation of the given integer.

Base64(octets): Base64 encoding of the given octet sequence, restricted to canonical form
with no whitespace, as defined in RFC4648.
UnBase64(str): Decode the given Base64 string into an octet sequence.

Normalize(str): Normalize the given string using the SASLprep profile RFC4013 of the
"stringprep" algorithm RFC3454.
XOR: The exclusive-or operation applied to each octet of the left and right-hand-side octet
sequences.
SHA256(str): The SHA-256 cryptographic hash function.

2.

3.

4.

5.

•

•

•

•

•

•

•

•

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 149

https://tools.ietf.org/html/rfc5802#section-7
https://tools.ietf.org/html/rfc5802
https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc4013
https://tools.ietf.org/html/rfc3454

HMAC(key, str): Keyed-hash message authentication code, as defined in RFC2104, with
SHA-256 as the underlying hash function.
KDF(str, salt, params...): One of the supported key derivations function, with the output key

length the same as the SHA-256 output length (32 octets). params... are the additional

parameters that are applicable for the function: iterations and memory.

Escape(str): Replace every occurrence of "," and "=" in the given string with "=2C" and "=3D"
respectively.

Data Stored on the Server

For each user, the server needs to store:

A random, per-user salt.
The type string corresponding to the key derivation function (KDF) used to hash the
password (e.g. "argon2id13"). This is needed to handle future revisions of the KDF, as well
as allowing migration to stronger KDFs that may be added to WAMP-SCRAM in the future.
This may also be needed if the KDF used during user registration is configurable or
selectable on a per-user basis.
Parameters that are applicable to the key derivation function : iterations and possibly

memory.

The StoredKey.

The ServerKey.

where StoredKey and ServerKey are computed as follows:

Note that "Client Key" and "Server Key" are string literals.

The manner in which the StoredKey and ServerKey are shared with the server during user
registration is outside the scope of SCRAM and this document.

AuthMessage

In SCRAM, AuthMessage is used for computing ClientProof and ServerSignature. AuthMessage is
computed using attributes that were sent in the first three messages of the authentication
exchange.

•

•

•

1.
2.

3.

4.

5.

SaltedPassword = KDF(Normalize(password), salt, params...)
ClientKey = HMAC(SaltedPassword, "Client Key")
StoredKey = SHA256(ClientKey)
ServerKey = HMAC(SaltedPassword, "Server Key")

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 150

https://www.ietf.org/rfc/rfc2104.txt

ClientProof

ClientProof is computed by the client during the authentication exchange as follows:

The ClientProof is then sent to the server, base64-encoded, via the AUTHENTICATE.Signature
argument.

The server verifies the ClientProof by computing the RecoveredStoredKey and comparing it to the

actual StoredKey:

Note that the client MAY cache the ClientKey and StoredKey (or just SaltedPassword) to avoid
having to perform the expensive KDF computation for every authentication exchange. Storing
these values securely on the client is outside the scope of this document.

ServerSignature

ClientFirstBare = "n=" + Escape(HELLO.Details.authid) + "," +
 "r=" + HELLO.Details.authextra.nonce

ServerFirst = "r=" + CHALLENGE.Details.nonce + "," +
 "s=" + CHALLENGE.Details.salt + "," +
 "i=" + Decimal(CHALLENGE.Details.iterations)

CBindName = AUTHENTICATE.Extra.channel_binding

CBindData = AUTHENTICATE.Extra.cbind_data

CBindFlag = IfNull(CBindName, "n", "p=" + CBindName)

CBindInput = CBindFlag + ",," +
 IfNull(CBindData, "", UnBase64(CBindData))

ClientFinalNoProof = "c=" + Base64(CBindInput) + "," +
 "r=" + AUTHENTICATE.Extra.nonce

AuthMessage = ClientFirstBare + "," + ServerFirst + "," +
 ClientFinalNoProof

SaltedPassword = KDF(Normalize(password), salt, params...)
ClientKey = HMAC(SaltedPassword, "Client Key")
StoredKey = SHA256(ClientKey)
ClientSignature = HMAC(StoredKey, AuthMessage)
ClientProof = ClientKey XOR ClientSignature

ClientSignature = HMAC(StoredKey, AuthMessage)
RecoveredClientKey = ClientSignature XOR ReceivedClientProof
RecoveredStoredKey = SHA256(RecoveredClientKey)

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 151

ServerSignature is computed by the server during the authentication exchange as follows:

The ServerSignature is then sent to the client, base64-encoded, via the

WELCOME.Details.authextra.verifier attribute.

The client verifies the ServerSignature by computing it and comparing it with the ServerSignature
sent by the server:

Key Derivation Functions

SCRAM uses a password-based key derivation function (KDF) to hash user passwords. WAMP-
SCRAM supports both Argon2 and PBKDF2 as the KDF. Argon2 is recommended because of its
memory hardness and resistance against GPU hardware. PBKDF2, which does not feature
memory hardness, is also supported for applications that are required to use primitives
currently approved by cryptographic standards.

The following table maps the CHALLENGE.Details.kdf type string to the corresponding KDF.

KDF type string Function

"argon2id13" Argon2id variant of Argon2, version 1.3

"pbkdf2" PBKDF2

Table 10

To promote interoperability, WAMP-SCRAM client/server implementations SHOULD support both
of the above KDFs. During authentication, there is no "negotiation" of the KDF, and the client
MUST use the same KDF than the one used to create the keys stored in the authentication
database.

Which KDF is used to hash the password during user registration is up to the application and/or
server implementation, and is not covered by this document. Possibilities include:

making the KDF selectable at runtime during registration,
making the KDF statically configurable on the server, or,
hard-coding the KDF selection on the server.

Argon2

ServerSignature = HMAC(ServerKey, AuthMessage)

ServerKey = HMAC(SaltedPassword, "Server Key")
ServerSignature = HMAC(ServerKey, AuthMessage)

•
•
•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 152

https://datatracker.ietf.org/doc/draft-irtf-cfrg-argon2/
https://tools.ietf.org/html/rfc2898

The Argon2 key derivation function, proposed in draft-irtf-cfrg-argon2, is computed using the
following parameters:

CHALLENGE.Details.salt as the cryptographic salt,

CHALLENGE.Details.iterations as the number of iterations,

CHALLENGE.Details.memory as the memory size (in kibibytes),

1 as the parallelism parameter,
Argon2id as the algorithm variant, and,
32 octets as the output key length.

For WAMP-SCRAM, the parallelism parameter is fixed to 1 due to the password being hashed on
the client side, where it is not generally known how many cores/threads are available on the
client's device.

Section 4 of the Argon2 internet draft recommends the general procedure for selecting
parameters, of which the following guidelines are applicable to WAMP-SCRAM:

A 128-bit salt is recommended, which can be reduced to 64-bit if space is limited.
The memory parameter is to be configured to the maximum amount of memory usage that
can be tolerated on client devices for computing the hash.
The iterations parameter is to be determined experimentally so that execution time on the
client reaches the maximum that can be tolerated by users during authentication. If the
execution time is intolerable with iterations = 1, then reduce the memory parameter as
needed.

PBKDF2

The PBKDF2 key derivation function, defined in RFC2898, is used with SHA-256 as the
pseudorandom function (PRF).

The PDBKDF2 hash is computed using the following parameters:

CHALLENGE.Details.salt as the cryptographic salt,

CHALLENGE.Details.iterations as the iteration count, and,

32 octets as the output key length (dkLen), which matches the SHA-256 output length.

RFC2898 section 4.1 recommends at least 64 bits for the salt.

The iterations parameter SHOULD be determined experimentally so that execution time on the
client reaches the maximum that can be tolerated by users during authentication. RFC7677
section 4 recommends an iteration count of at least 4096, with a significantly higher value on
non-mobile clients.

•

•

•

•
•
•

•
•

•

•

•

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 153

https://datatracker.ietf.org/doc/draft-irtf-cfrg-argon2/
https://tools.ietf.org/html/rfc2898
https://tools.ietf.org/html/rfc2898
https://tools.ietf.org/html/rfc7677#section-4
https://tools.ietf.org/html/rfc7677#section-4

13.4. Cryptosign-based Authentication
WAMP-Cryptosign is a WAMP authentication method based on public-private key cryptography.
Specifically, it is based on Ed25519 digital signatures as described in .

Ed25519 is an elliptic curve signature scheme that instantiates the Edwards-curve Digital
Signature Algorithm (EdDSA) with elliptic curve parameters which are equivalent to Curve25519.
Curve25519 is a SafeCurve, which means it is easy to implement and avoid security issues
resulting from common implementation challenges and bugs. Ed25519 is intended to operate at
around the 128-bit security level, and there are robust native implementations available as open-
source, e.g. libsodium, which can be used from script languages, e.g. PyNaCl.

An implementation of WAMP-Cryptosign MUST provide

Client Authentication

and MAY implement one or more of

TLS Channel Binding
Router Authentication
Trustroots and Certificates
Remote Attestation

The following sections describe each of above features of WAMP-Cryptosign.

Examples of complete authentication message exchanges can be found at the end of this chapter
in Example Message Exchanges.

In WAMP, the following cryptographic primitives are used with WAMP-Cryptosign
authentication:

Elliptic Curves:

SECG Usage in WAMP

secp256r1 Transport Encryption (WAMP transport encryption)

curve25519 Session Authentication (WAMP-Cryptosign authentication)

secp256k1 Data Signatures (WAMP-Cryptosign certificates, WAMP E2E encryption)

Table 11

RFC4492: Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)
RFC7748: Elliptic Curves for Security

Hash Functions:

[RFC8032]

•

•
•
•
•

•
•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 154

https://ed25519.cr.yp.to/
https://ed25519.cr.yp.to/ed25519-20110926.pdf
https://cr.yp.to/ecdh.html
https://safecurves.cr.yp.to/
https://github.com/jedisct1/libsodium
https://github.com/pyca/pynacl
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc7748

SECG Usage in WAMP

sha256 Session Authentication (WAMP-Cryptosign authentication)

keccak256 Data Signatures (WAMP-Cryptosign certificates, WAMP E2E encryption)

Table 12

Note that sha256 refers to the SHA-2 algorithm, while sha3-256 is a different algorithm
refering to SHA-3.

Signature Schemes:

SECG Usage in WAMP

ed25519 Session Authentication (WAMP-Cryptosign Authentication)

ecdsa Data Signatures (Ethereum, WAMP-Cryptosign Certificates, WAMP-E2E)

Table 13

13.4.1. Client Authentication

A Client is authenticated to a Router by:

sending a HELLO, announcing its public key

signing a (random) challenge received in CHALLENGE with its private key

let the router verify the signature, proofing the client actually controls the private key, and
thus the authenticity of the client as identified by the public key
let the router admit the client to a realm under a role, based on the public key

Thus, the client is identified using its public key, and the Router needs to know said public key
and its desired realm and role in advance.

A Client for which the Router does not previously know the client's public key MAY use the
Trustroots and Certificates feature to trust a Client based on an additional certificate presented
by the client.

A Router is optionally (see Router Authentication) authenticated to a Client by:

client includes a (random) HELLO.Details.challenge|string

the router sends the signature as part of its challenge to the client, in
CHALLENGE.extra.signature|string

Again, in this case, the Router includes a trustroot and certificate for the client to verify.

1.

2.

3.

4.

1.

2.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 155

13.4.1.1. Computing the Signature
The challenge sent by the router is a 32 bytes random value, encoded as a Hex string in
CHALLENGE.extra.challenge|string.

When no channel binding is active, the Ed25519 signature over the 32 bytes message MUST be
computed using the WAMP-Cryptosign private key of the authenticating client.

When channel binding is active, the challenge MUST first be XOR'ed bytewise with the channel
ID, e.g. the 32 bytes from TLS with channel binding "tls-unique", and the resulting message (which
again has length 32 bytes) MUST be signed using the WAMP-Cryptosign private key of the
authenticating client.

The client MUST return the concatenation of the signature and the message signed (96 bytes) in
the AUTHENTICATE message.

13.4.1.2. Example Message Flow
A typical authentication begins with the client sending a HELLO message specifying the cryptosign
method as (one of) the authentication methods:

The HELLO.Details.authmethods|list is used by the client to announce the authentication methods

it is prepared to perform. For WAMP-Cryptosign, this MUST include "cryptosign".

The HELLO.Details.authid|string is the authentication ID (e.g. username) the client wishes to

authenticate as. For WAMP-Cryptosign authentication, this MAY be provided. If no authid is

provided, the router SHOULD automatically chose and assign an authid (e.g. the Hex encode
public key).

The HELLO.Details.authextra|dict contains the following members for WAMP-Cryptosign:

Field Type Required Description

pubkey string yes The client public key (32 bytes) as a Hex encoded string, e.g.
545efb0a2192db8d43f118e9bf9aee081466e1ef36c708b96ee6f62dddad9122

[1, "realm1", {
 "roles": {/* see below */},
 "authmethods": ["cryptosign"],
 "authid": "client01@example.com",
 "authextra": {
 "pubkey":
"545efb0a2192db8d43f118e9bf9aee081466e1ef36c708b96ee6f
62dddad9122"
 }
}]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 156

Field Type Required Description

channel_binding string no If TLS channel binding is in use, the TLS channel binding type, e.g. "tls-unique".

challenge string no A client chosen, random challenge (32 bytes) as a Hex encoded string, to be signed by the router.

trustroot string no When the client includes a client certificate (see below), the Ethereum address of the trustroot of the certificate
chain to be used, e.g. 0x72b3486d38E9f49215b487CeAaDF27D6acf22115, which can be a
Standalone Trustroot or an On-chain Trustroot (see Trustroots)

Table 14

The client needs to announce the WAMP roles and features it supports, for example:

If the router is unwilling or unable to perform WAMP-Cryptosign authentication, it'll either skip
forward trying other authentication methods (if the client announced any) or send an ABORT
message.

If the router is willing to let the client authenticate using WAMP-Cryptosign and the router
recognizes the provided HELLO.Details.authextra.pubkey|string, it'll send a CHALLENGE message:

The client will send an AUTHENTICATE message containing a signature:

{"callee": {"features": {"call_canceling": True,
 "caller_identification": True,
 "pattern_based_registration": True,
 "progressive_call_results": True,
 "registration_revocation": True,
 "shared_registration": True}},
"caller": {"features": {"call_canceling": True,
 "caller_identification": True,
 "progressive_call_results": True}},
"publisher": {"features": {"publisher_exclusion": True,
 "publisher_identification": True,
 "subscriber_blackwhite_listing": True}},
"subscriber": {"features": {"pattern_based_subscription": True,
 "publisher_identification": True,
 "subscription_revocation": True}}}}

[4, "cryptosign", {
 "challenge":
"fa034062ad76352b53a25358854577730db82f367aa4397
09c91296d04a5716c",
 "channel_binding": null
}]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 157

If the authentication succeeds, the server will router respond with a WELCOME message:

where

authid|string: The authentication ID the client was (actually) authenticated as.

authrole|string: The authentication role the client was authenticated for.

authmethod|string: The authentication method, here "cryptosign"

authprovider|string: The actual provider of authentication. For Ticket-based authentication,

this can be freely chosen by the app, e.g. static or dynamic.

The WELCOME.Details again contain the actual authentication information active. If the

authentication fails, the router will response with an ABORT message.

When the authentication is successful, WELCOME.Details.roles|dict will announce the roles and
features the router supports:

[5
'e2f0297a193b63b7a4a92028e9e2e6107f82730560d54a65
7bd982cb4b3151490399debbbde998e494d3c3b2a5e2e912712
91e10dee85a6cfaa127885ddd8b0afa034062ad76352b53a2535
8854577730db82f367aa439709c91296d04a5716c', {}]

[2, 7562122397119786, {
 "authextra": {
 "x_cb_node": "intel-nuci7-27532",
 "x_cb_peer": "tcp4:127.0.0.1:49032",
 "x_cb_pid": 27637,
 "x_cb_worker": "worker001"
 },
 "authid": "client01@example.com",
 "authmethod": "cryptosign",
 "authprovider": "static",
 "authrole": "user",
 "realm": "realm1",
 "roles": {/* see below */}
}]

1.

2.

3.

4.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 158

{"broker": {"features": {"event_retention": True,
 "pattern_based_subscription": True,
 "publisher_exclusion": True,
 "publisher_identification": True,
 "session_meta_api": True,
 "subscriber_blackwhite_listing": True,
 "subscription_meta_api": True,
 "subscription_revocation": True}},
 "dealer": {"features": {"call_canceling": True,
 "caller_identification": True,
 "pattern_based_registration": True,
 "progressive_call_results": True,
 "registration_meta_api": True,
 "registration_revocation": True,
 "session_meta_api": True,
 "shared_registration": True,
 "testament_meta_api": True}}
 }

13.4.1.3. Test Vectors
The following test vectors allow to verify an implementation of WAMP-Cryptosign signatures.
You can use channel_id, private_key and challenge as input, and check the computed signature

matches signature.

The test vectors contain instances for both with and without a channel_id, which represents the

TLS channel ID when using TLS with tls-unique channel binding.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 159

test_vectors_1 = [
 {
 'channel_id': None,
 'private_key':
'4d57d97a68f555696620a6d849c0ce582568518d729eb753
dc7c732de2804510',
 'challenge': 'ff',
 'signature':
'b32675b221f08593213737bef8240e7c15228b07028e195
95294678c90d11c0cae80a357331bfc5cc9fb71081464e6e75
013517c2cf067ad566a6b7b728e5d03ff
ffffffffffff'
 },
 {
 'channel_id': None,
 'private_key':
'd511fe78e23934b3dadb52fcd022974b80bd92bccc7c5cf404e46cc
0a8a2f5cd',
 'challenge':
'b26c1f87c13fc1da14997f1b5a71995dff8fbe0a62fae8473c7bdbd0
5bfb607d',
 'signature':
'd4209ad10d5aff6bfbc009d7e924795de138a63515efc7afc6b01b
7fe5201372190374886a70207b042294af5bd64ce725cd8dce
b344e6d11c09d1aaaf4d660fb26c1f87c13fc1da14997f1b5a7199
5dff8fbe0a62fae8473c7bdbd05bfb607d'
 },
 {
 'channel_id': None,
 'private_key':
'6e1fde9cf9e2359a87420b65a87dc0c66136e66945196ba247
5990d8a0c3a25b',
 'challenge':
'b05e6b8ad4d69abf74aa3be3c0ee40ae07d66e1895b9ab09285a2f
1192d562d2',
 'signature':
'7beb282184baadd08f166f16dd683b39cab53816ed81e6955def9
51cb2ddad1ec184e206746fd82bda075af03711d3d5658fc84a7
6196b0fa8d1ebc92ef9f30bb05e6b8ad4d69abf74aa3be3c0ee40ae0
7d66e1895b9ab09285a2f1192d562d2'
 },
 {
 'channel_id':
'62e935ae755f3d48f80d4d59f6121358c435722a67e859cc0c
aa8b539027f2ff',
 'private_key':
'4d57d97a68f555696620a6d849c0ce582568518d729eb753
dc7c732de2804510',
 'challenge': 'ff',
 'signature':
'9b6f41540c9b95b4b7b281c3042fa9c54cef43c842d62ea3fd60
30fcb66e70b3e80d49d44c29d1635da9348d02ec93f3ed1ef227
dfb59a07b580095c2b82f80f9d16ca518aa0c2b707f2b2a609edec
a73bca8dd59817a633f35574ac6fd80d00'
 },

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 160

 {
 'channel_id':
'62e935ae755f3d48f80d4d59f6121358c435722a67e859cc0c
aa8b539027f2ff',
 'private_key':
'd511fe78e23934b3dadb52fcd022974b80bd92bccc7c5cf404e46cc
0a8a2f5cd',
 'challenge':
'b26c1f87c13fc1da14997f1b5a71995dff8fbe0a62fae8473c7bdbd0
5bfb607d',
 'signature':
'305aaa3ac25e98f651427688b3fc43fe7d8a68a7ec1d7d61c615
17c519bd4a427c3015599d83ca28b4c652333920223844ef
0725eb5dc2febfd6af7677b73f01d0852a29b460fc92ec943242ac
638a053bbacc200512b18b30d15083cbdc9282'
 },
 {
 'channel_id':
'62e935ae755f3d48f80d4d59f6121358c435722a67e859cc0c
aa8b539027f2ff',
 'private_key':
'6e1fde9cf9e2359a87420b65a87dc0c66136e66945196ba247
5990d8a0c3a25b',
 'challenge':
'b05e6b8ad4d69abf74aa3be3c0ee40ae07d66e1895b9ab09285a2f
1192d562d2',
 'signature':
'ee3c7644fd8070532bc1fde3d70d742267da545d8c8f03e63bda
63f1ad4214f4d2c4bfdb4eb9526def42deeb7e31602a6ff99eba893e
0a4ad4d45892ca75e608d2b75e24a189a7f78ca776ba36fc53f6c
3e31c32f251f2c524f0a44202f2902d'
 },
]

13.4.2. TLS Channel Binding

TLS Channel Binding is an optional feature for WAMP-Cryptosign when running on top of TLS for
link encryption. The use of "channel binding" to bind authentication at application layers to
secure sessions at lower layers in the network stack protects against certain attack scenarios. For
more background information, please see

RFC5056: On the Use of Channel Bindings to Secure Channels
Binding Security Tokens to TLS Channels

A client that wishes to use TLS Channel Binding with WAMP-Cryptosign must include an
attribute channel_binding in the authextra sent in HELLO.Details:

•
•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 161

https://tools.ietf.org/html/rfc5056
https://www.ietf.org/proceedings/90/slides/slides-90-uta-0.pdf

The channel_binding, if present, MUST be a string with a value of tls-unique or tls-exporter, to
specify the channel binding type that is to be used:

tls-unique: RFC5929: Channel Bindings for TLS

tls-exporter: RFC9266: Channel Bindings for TLS 1.3

When a router receives a HELLO message from a client with a TLS channel binding attribute
present, the router MUST:

get the TLS channel ID (32 bytes) of the TLS session with the respective channel type
requested
generate new challenge (32 random bytes)
expect the client to send back a signature in AUTHENTICATE computed over challenge XOR
channel_id

and send back the channel_binding in use, and the challenge in a CHALLENGE message:

The authenticating client MUST verify the actual channel binding in use matches the one it
requested. If a router does not support the channel_binding the client requested, it may chose to

continue the authentication without channel binding, and hence CHALLENGE.Extra would not

contain a channel_binding.

The client MUST then locally fetch the channel_id from the underlying TLS connection and sign

CHALLENGE.Extra.challenge XOR channel_id using its private key.

[1, 'realm1', {
 'authextra': {
 'channel_binding': 'tls-unique',
 'pubkey':
'545efb0a2192db8d43f118e9bf9aee081466e1ef36c708b96ee6f
62dddad9122'
 },
 'authmethods': ['cryptosign']
 }]

•

•

1.

2.
3.

[4, 'cryptosign', {
 'challenge':
'0e9192bc08512c8198da159c1ae600ba91729215f35d5610
2ee318558e773537',
 'channel_binding': 'tls-unique'}]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 162

https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc9266

13.4.3. Router Authentication

With the basic Client Authentication mechanism in WAMP-Cryptosign, the router is able to
authenticate the client, since to successfully sign CHALLENGE.Extra.challenge the client will need
the private key corresponding to the public key which the client announced in
HELLO.Details.pubkey to be authenticated under.

However, from this alone, the client can not be sure the router against which it is authenticating
is actually valid, as in authentic. Router Authentication adds this capability.

To request a router to authenticate, a client will start the authentication handshake by sending
HELLO.Details.challenge|string:

Similar to Client Authentication, the challenge must encode a 32 bytes random value as a string in
HEX format, and the router MUST respond by signing this challenge value with its (the router's)
private key, and send back the signature in CHALLENGE.Extra.signature

When Router Authentication is used, the router MUST also send its public key in
CHALLENGE.Extra.pubkey.

Further, Router Authentication can be combined with TLS Channel Binding, in which case the
value signed by the router will be HELLO.Details.challenge XOR channel_id.

[1, 'realm1', {
 'authextra': {
 'challenge':
'bbae60ea44cdd7b20dc7010a618b0f0803fab25a817520b4b7f05
7299b524deb',
 'pubkey':
'545efb0a2192db8d43f118e9bf9aee081466e1ef36c708b96ee6f
62dddad9122'
 }}]

[4, 'cryptosign', {
 'challenge':
'0e9192bc08512c8198da159c1ae600ba91729215f35d5610
2ee318558e773537',
 'pubkey':
'4a3838f6fe75251e613329d53fc69b262d5eac97fb1d73bebbaed
4015b53c862',
 'signature':
'fd5128d2d207ba58a9d1d6f41b72c747964ad9d1294077b3b1
eee6130b05843ab12c53c7f2519f73d4feb82db19d8ca0fc26b62b
de6518e79a882f5795bc9f00bbae60ea44cdd7b20dc7010a618b0
f0803fab25a817520b4b7f057299b524deb'}]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 163

13.4.4. Trustroots and Certificates

13.4.4.1. Certificate Chains
A public-key certificate is a signed statement that is used to establish an association between an
identity and a public key. This is called a machine identity. The entity that vouches for this
association and signs the certificate is the issuer of the certificate and the identity whose public
key is being vouched for is the subject of the certificate. In order to associate the identity and the
public key, a chain of certificates is used. The certificate chain is also called the certification path
or chain of trust.

What is a Certificate Chain?

A certificate chain is a list of certificates (usually starting with an end-entity certificate) followed
by one or more CA certificates (usually the last one being a self-signed certificate), with the
following properties:

The issuer of each certificate (except the last one) matches the subject of the next certificate
in the list.
Each certificate (except the last one) is supposed to be signed by the secret key corresponding
to the next certificate in the chain (i.e. the signature of one certificate can be verified using
the public key contained in the following certificate).
The last certificate in the list is a trust anchor: a certificate that you trust because it was
delivered to you by some trustworthy procedure. A trust anchor is a CA certificate (or more
precisely, the public verification key of a CA) used by a relying party as the starting point for
path validation.

More information about certificate chains, while in the context of x509, can be found in this
white paper published by the PKI forum: Understanding Certification Path Construction.

What are On-chain Trust Anchors?

In x509, the set of trusted root CA certificates are stored in a machine/device local certificate
store. This set of trusted root CA certificates are:

filled and fixed by the software or device vendor with a default root CA certificates set
may be extendable or replaceable by a user provided custom root CA certificates set

With 1., the user implicitly trusts the vendor, and all root CAs in the set installed by the vendor.
With 2., the user must manage a public-private key infrastructure, and when information is to be
shared with other parties, the use PKI must be made available to those parties, and the parties
will operationally and administratively depend on the PKI hosting party. In summary, x509
follows a centralized and hierarchical trust model.

•

•

•

1.
2.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 164

http://www.oasis-pki.org/pdfs/Understanding_Path_construction-DS2.pdf

With WAMP-Cryptosign, we use a public blockchain for certificate chain trust anchors. Using a
public blockchain, specifically Ethereum, provides a decentralized, shared and cryptographically
secure storage for root CA certificates, that is trust anchors. These anchors can be associated with
other entities stored on-chain, such as federated Realms.

The following diagram shows the structure of certificate chains in WAMP-Cryptosign:

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 165

 EIP712AuthorityCertificate
 +------------------------------+
 | chainId | Root Certificate
 | verifyingContract |
 | validFrom | * trust anchor, stored on-chain
 +----+-- issuer (== realm owner) | * tied to a realm
 +----+-> subject (== issuer) -------+----+ * self-signed by realm owner
 | realm | |
 | capabilities | |
 | meta | |
 +------------------------------+ | +------------------------------+
 | issuerSignature +----+---> Public Blockchain (L1 or L2) |
 +------------------------------+ | +------------------------------+
 |
 |
 |
 |
 |
 EIP712AuthorityCertificate |
 +------------------------------+ |
 | chainId | | Intermediate Certificate
 | verifyingContract | |
 | validFrom | | * stored off-chain
 | issuer <------------------+----+ * same realm as issueing cert
 +-----+-- subject | * subset of capabilities
 | | realm | of issueing cert
 | | capabilities |
 | | meta |
 | +------------------------------+
 | | issuerSignature |
 | +------------------------------+
 |

optional hierarchical chain of intermediate certificates

 |
 | EIP712AuthorityCertificate
 | +------------------------------+
 | | chainId | Intermediate Certificate
 | | verifyingContract |
 | | validFrom | * stored off-chain
 +-----+-> issuer | * same realm as issueing cert
 | subject--------------------+----+ * subset of capabilities
 | realm | | of issueing cert
 | capabilities | |
 | meta | |
 +------------------------------+ |
 | issuerSignature | |
 +------------------------------+ |
 |
 |
 |

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 166

 |
 |
 EIP712DelegateCertificate |
 +------------------------------+ |
 | chainId | | End-point Certificate
 | verifyingContract | |
 | validFrom | | * ephemeral, generate per-boot
 | delegate <-----------------+----+ * subject is WAMP-Cryptosign pubkey
 | csPubKey | * Boot time (UTC in Posix ns)
 | bootedAt |
 | meta |
 | |
 | |
 +------------------------------+ +--------------------------+
 | delegateSignature +---------> Hardware Security Module |
 +------------------------------+ +--------------------------+

13.4.4.2. Certificate Types
The certificate types EIP712AuthorityCertificate and EIP712DelegateCertificate follow EIP712
and use Ethereum signatures.

EIP712AuthorityCertificate:

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 167

https://eips.ethereum.org/EIPS/eip-712

EIP712DelegateCertificate:

[
 {
 "name": "chainId",
 "type": "uint256"
 },
 {
 "name": "verifyingContract",
 "type": "address"
 },
 {
 "name": "validFrom",
 "type": "uint256"
 },
 {
 "name": "issuer",
 "type": "address"
 },
 {
 "name": "subject",
 "type": "address"
 },
 {
 "name": "realm",
 "type": "address"
 },
 {
 "name": "capabilities",
 "type": "uint64"
 },
 {
 "name": "meta",
 "type": "string"
 }
]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 168

The EIP712 types for certificates contain:

chainId: the chain ID of the blockchain this signed typed data is bound to

verifyingContract: the address of the (main) smart contract this signed typed data is bound to

This prevents cross-chain and cross-contract attacks. The chainId is an integer according to
EIP155:

Ethereum Mainnet (ChainID 1)
Goerli Testnet (ChainID 5)
zkSync 2.0 Alpha Testnet (ChainID 280)

Besides EIP712, other comparable approaches to specify cryptographically hashable, typed
structured data ("messages") include:

Veriform: cryptographically verifiable and canonicalized message format similar to Protocol
Buffers, with an "embedded-first" (heapless) implementation suitable for certificates or other
signed objects

[
 {
 "name": "chainId",
 "type": "uint256"
 },
 {
 "name": "verifyingContract",
 "type": "address"
 },
 {
 "name": "validFrom",
 "type": "uint256"
 },
 {
 "name": "delegate",
 "type": "address"
 },
 {
 "name": "csPubKey",
 "type": "bytes32"
 },
 {
 "name": "bootedAt",
 "type": "uint64"
 },
 {
 "name": "meta",
 "type": "string"
 }
]

•

•

•
•
•

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 169

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://docs.rs/veriform/latest/veriform/
https://github.com/iqlusioninc/veriform/blob/develop/spec/draft-veriform-spec.md

objecthash: A way to cryptographically hash objects (in the JSON-ish sense) that works cross-
language. And, therefore, cross-encoding.

•

13.4.4.3. Capabilities
Bit 0: CAPABILITY_ROOT_CA

Bit 1: CAPABILITY_INTERMEDIATE_CA

Bit 2: CAPABILITY_PUBLIC_RELAY

Bit 3: CAPABILITY_PRIVATE_RELAY

Bit 4: CAPABILITY_GATEWAY

Bit 5: CAPABILITY_EXCHANGE

Bit 6: CAPABILITY_PROVIDER

Bit 7: CAPABILITY_CONSUMER

Bits 8 - 63: future use, all set to 0

Permission to create a CAPABILITY_PUBLIC_RELAY certificate on a realm can be configured by the
realm owner for:

PRIVATE: signed by realm owner

PERMISSIONED: signed by requestor and realm owner

OPEN: signed by requestor

Permission for CAPABILITY_ROOT_CA is always PRIVATE.

•

•

•

•

•

•

•

•

•

•

•

•

13.4.4.4. Certificate Chain Verification
use of a specific method/mechanism, when it comes to establishing trust (i.e. certifying public
keys).

To verify a certificate chain and respective certificate signatures

the following Certificate Chain Rules (CCR) must be checked:

CCR-1: The chainId and verifyingContract must match for all certificates to what we expect,

and validFrom before current block number on the respective chain.

[
 (EIP712DelegateCertificate, Signature), // delegate certificate
 (EIP712AuthorityCertificate, Signature), // intermediate CA certificate
 ...
 (EIP712AuthorityCertificate, Signature), // intermediate CA certificate
 (EIP712AuthorityCertificate, Signature) // root CA certificate
]

1.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 170

https://github.com/benlaurie/objecthash

CCR-2: The realm must match for all certificates to the respective realm.

CCR-3: The type of the first certificate in the chain must be a EIP712DelegateCertificate, and
all subsequent certificates must be of type EIP712AuthorityCertificate.

CCR-4: The last certificate must be self-signed (issuer equals subject), it is a root CA
certificate.
CCR-5: The intermediate certificate's issuer must be equal to the subject of the previous
certificate.
CCR-6: The root certificate must be validFrom before the intermediate certificate

CCR-7: The capabilities of intermediate certificate must be a subset of the root cert

CCR-8: The intermediate certificate's subject must be the delegate certificate delegate

CCR-9: The intermediate certificate must be validFrom before the delegate certificate

CCR-10: The root certificate's signature must be valid and signed by the root certificate's
issuer.

CCR-11: The intermediate certificate's signature must be valid and signed by the
intermediate certificate's issuer.

CCR-12: The delegate certificate's signature must be valid and signed by the delegate.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.4.4.5. Trustroots
Certificate chains allow to verify a delegate certificate following the Issuers-Subjects up to a Root
CA, which is a self-signed certificate (issuer and subject are identical). The Root CA represents the
Trustroot of all involved delegates.

When both a connecting WAMP client and the WAMP router are using the same Root CA and thus
use a common Trustroot, they are said to be authorized in the same trust domain (identified by
the trustroot).

Trustroots are identified by their Ethereum address, which is computed from the issuer public
key according to EIP-55.

There are two types of Root CAs and Trustroots:

Standalone Trustroot
On-chain Trustroot

A Standalone Trustroot is managed by a single operator/owner, does not allow infrastructure
elements (nodes, client, realms) to be integrated between different operators/owners and is
privately stored on the respective operators systems only, usually as files or in databases.

Note that the Ethereum address, can be computed deterministically from the public key of the
issuer of a certificate, even when the certificate (or the issuer) is not stored on-chain.

1.
2.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 171

https://github.com/ethereumbook/ethereumbook/blob/develop/04keys-addresses.asciidoc#ethereum-addresses

An On-chain Trustroot in contrast is stored in Ethereum and publically shared between different
operators/owners which allows infrastructure elements (nodes, clients, realms) to be integrated.
For example, clients/nodes operated by different operators can authenticate to each other and
nodes operated by different operators can authenticate to each other sharing the hosting of one
realm.

The management of On-Chain Trustroots depends on the policy of the trustroot which is chosen
and fixed when the trustroot is created:

Open
Permitted
Private

With an Open On-chain Trustroot, new certificates can be added to a certificate chain freely and
only requires a signature by the respective intermediate CA issuer.

1.
2.
3.

13.4.4.5.1. Standalone Trustroots
For a Standalone Trustroot the trustroot MUST be specified in HELLO.Details.authextra.trustroot|
string

and certificates MUST contain

a single EIP712DelegateCertificate, and have the complete certificate chain of

EIP712AuthorityCertificates up to trustroot pre-agreed (locally stored or built-in) OR

the complete chain of certificates starting with a EIP712DelegateCertificate followed by one

or more EIP712AuthorityCertificates up to trustroot.

Example 3 contains an example gor the latter, with a bundled complete certificate chain, that is
the last certificate in the list is self-signed (is a root CA certificate) and matches trustroot

{'authextra': {'certificates': [/* certificate, see below */],
 'challenge':
'2763e7fdb1c34a74e8497daf6c913744d11161a94cec3b16aeec
60a788612e17',
 'channel_binding': 'tls-unique',
 'pubkey':
'12ae0184b180e9a9c5e45be4a1afbce3c6491320063701cd9c4
011a777d04089',
 'trustroot': '0xf766Dc789CF04CD18aE75af2c5fAf2DA6650Ff57'},

•

•

trustroot == 0xf766Dc789CF04CD18aE75af2c5fAf2DA6650Ff57
 == certificates[-1].issuer
 == certificates[-1].subject

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 172

13.4.4.5.2. On-chain Trustroots
For an On-chain Trustroot the trustroot MUST be specified in HELLO.Details.authextra.trustroot|
string

and certificates MUST contain a single EIP712DelegateCertificate, and have the complete

certificate chain of EIP712AuthorityCertificates up to trustroot stored on-chain (Ethereum).

This is called a free-standing, on-chain CA.

When the trustroot is associated with an on-chain Realm that has trustroot configured as the
Realm CA, this is called On-chain CA with CA associated with On-chain Realm.

{'authextra': {'certificates': [/* certificate, see below */],
 'challenge':
'2763e7fdb1c34a74e8497daf6c913744d11161a94cec3b16aeec
60a788612e17',
 'channel_binding': 'tls-unique',
 'pubkey':
'12ae0184b180e9a9c5e45be4a1afbce3c6491320063701cd9c4
011a777d04089',
 'trustroot': '0xf766Dc789CF04CD18aE75af2c5fAf2DA6650Ff57'},

13.4.5. Remote Attestation

Remote attestation is a method by which a host (WAMP client) authenticates its hardware and
software configuration to a remote host (WAMP router). The goal of remote attestation is to
enable a remote system (challenger) to determine the level of trust in the integrity of the
platform of another system (attestator).

Remote attestation allows to

perform security decisions based on security policy and measurement log
tie device identity into authentication infrastructure
verify device state in access control decisions
avoid exfiltration of credentials

Remote attestation is requested by the router sending CHALLENGE.extra.attest|list[int] with a list of
device PCRs to be quoted. A list of all PCRs available (usually 24) in a PCR bank of a device can be
obtained running tpm2_pcrread without arguments.

A client receiving such a CHALLENGE MUST include an Event Log with PCRs collected from
measured boot signed by the device's security module's Attestation Key (AK) and using the
challenge sent by the router CHALLENGE.extra.challenge|string as a nonce. TPM 2.0 of the TCG
specifies a suitable function in tss2_quote (also see here).

•
•
•
•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 173

https://tpm2-tools.readthedocs.io/en/latest/man/tpm2_pcrread.1/#display-all-pcr-values
https://en.wikipedia.org/wiki/Trusted_Platform_Module
https://en.wikipedia.org/wiki/Trusted_Computing_Group
https://tpm2-tools.readthedocs.io/en/latest/man/tss2_quote.1/
https://tpm2-tss.readthedocs.io/en/latest/group___fapi___quote.html

The client MUST include the signed attestation in AUTHENTICATE.Extra.quote and the

corresponding measurement log in AUTHENTICATE.Extra.measurement. The following diagram
illustrates Remote Attestation with WAMP-Cryptosign:

 +------------------------------+
 | CHALLENGE sent by router |
 +------------------------------+

 Selected PCRs (bitmap) == CHALLENGE.Extra.attest

 Nonce == CHALLENGE.Extra.challenge

 |
 |
 |
 | Quote (signed with AK)
 | +------------------------------+
 | | |
 +----> | Selected PCRs (bitmap) |
 | | |
 | | PCR values (digest) |
 | | |
 +----> | Nonce |
 | |
 +------------------------------+
 | Signature (Attestation Key) |
 | |
 +------------------------------+

 +

 +------------------------------+
 | |
 | Measurement Log |
 | |
 | |
 | |
 +------------------------------+

 |
 |
 |
 |
 |
 | +------------------------------+
 +--> | AUTHENTICATE sent by client |
 +------------------------------+

 AUTHENTICATE.Extra.quote

 AUTHENTICATE.Extra.measurement

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 174

13.4.6. Example Message Exchanges

Example 1
Example 2
Example 3

•
•
•

13.4.6.1. Example 1
with router challenge
without TLS channel binding

•
•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 175

WAMP-Transmit(-, -) >>
 HELLO::
 [1,
 'devices',
 {'authextra': {'challenge':
'bbae60ea44cdd7b20dc7010a618b0f0803fab25a817520b4b7f05
7299b524deb',
 'channel_binding': None,
 'pubkey':
'545efb0a2192db8d43f118e9bf9aee081466e1ef36c708b96ee6f
62dddad9122'},
 'authmethods': ['cryptosign'],
 'roles': {'callee': {'features': {'call_canceling': True,
 'caller_identification': True,
 'pattern_based_registration': True,
 'progressive_call_results': True,
 'registration_revocation': True,
 'shared_registration': True}},
 'caller': {'features': {'call_canceling': True,
 'caller_identification': True,
 'progressive_call_results': True}},
 'publisher': {'features': {'publisher_exclusion': True,
 'publisher_identification': True,
 'subscriber_blackwhite_listing': True}},
 'subscriber': {'features': {'pattern_based_subscription': True,
 'publisher_identification': True,
 'subscription_revocation': True}}}}]
>>

WAMP-Receive(-, -) <<
 CHALLENGE::
 [4,
 'cryptosign',
 {'challenge':
'0e9192bc08512c8198da159c1ae600ba91729215f35d5610
2ee318558e773537',
 'channel_binding': None,
 'pubkey':
'4a3838f6fe75251e613329d53fc69b262d5eac97fb1d73bebbaed
4015b53c862',
 'signature':
'fd5128d2d207ba58a9d1d6f41b72c747964ad9d1294077b3b1
eee6130b05843ab12c53c7f2519f73d4feb82db19d8ca0fc26b62b
de6518e79a882f5795bc9f00bbae60ea44cdd7b20dc7010a618b0
f0803fab25a817520b4b7f057299b524deb'}]
<<

WAMP-Transmit(-, -) >>
 AUTHENTICATE::
 [5,

'a3a178fe792ed772a8fc092f8341e455de96670c8901264a7c
312dbf940d5743626fe9fbc29b23dcd2169b308eca309de85a89c
cd296b24835de3d95b16b77030e9192bc08512c8198da159c

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 176

1ae600ba91729215f35d56102ee318558e773537',
 {}]
>>

WAMP-Receive(-, -) <<
 WELCOME::
 [2,
 3735119691078036,
 {'authextra': {'x_cb_node': 'intel-nuci7-49879',
 'x_cb_peer': 'tcp4:127.0.0.1:53976',
 'x_cb_pid': 49987,
 'x_cb_worker': 'worker001'},
 'authid': 'client01@example.com',
 'authmethod': 'cryptosign',
 'authprovider': 'static',
 'authrole': 'device',
 'realm': 'devices',
 'roles': {'broker': {'features': {'event_retention': True,
 'pattern_based_subscription': True,
 'publisher_exclusion': True,
 'publisher_identification': True,
 'session_meta_api': True,
 'subscriber_blackwhite_listing': True,
 'subscription_meta_api': True,
 'subscription_revocation': True}},
 'dealer': {'features': {'call_canceling': True,
 'caller_identification': True,
 'pattern_based_registration': True,
 'progressive_call_results': True,
 'registration_meta_api': True,
 'registration_revocation': True,
 'session_meta_api': True,
 'shared_registration': True,
 'testament_meta_api': True}}},
 'x_cb_node': 'intel-nuci7-49879',
 'x_cb_peer': 'tcp4:127.0.0.1:53976',
 'x_cb_pid': 49987,
 'x_cb_worker': 'worker001'}]
<<

WAMP-Transmit(3735119691078036, client01@example.com) >>
 GOODBYE::
 [6, {}, 'wamp.close.normal']
>>

WAMP-Receive(3735119691078036, client01@example.com) <<
 GOODBYE::
 [6, {}, 'wamp.close.normal']
<<

13.4.6.2. Example 2
with router challenge
with TLS channel binding

•
•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 177

WAMP-Transmit(-, -) >>
 HELLO::
 [1,
 'devices',
 {'authextra': {'challenge':
'4f861f12796c2972b7b0026522a687aa851d90355122a61
d4f1fdce4d06b564f',
 'channel_binding': 'tls-unique',
 'pubkey':
'545efb0a2192db8d43f118e9bf9aee081466e1ef36c708b96ee6f
62dddad9122'},
 'authmethods': ['cryptosign'],
 'roles': {'callee': {'features': {'call_canceling': True,
 'caller_identification': True,
 'pattern_based_registration': True,
 'progressive_call_results': True,
 'registration_revocation': True,
 'shared_registration': True}},
 'caller': {'features': {'call_canceling': True,
 'caller_identification': True,
 'progressive_call_results': True}},
 'publisher': {'features': {'publisher_exclusion': True,
 'publisher_identification': True,
 'subscriber_blackwhite_listing': True}},
 'subscriber': {'features': {'pattern_based_subscription': True,
 'publisher_identification': True,
 'subscription_revocation': True}}}}]
>>

WAMP-Receive(-, -) <<
 CHALLENGE::
 [4,
 'cryptosign',
 {'challenge':
'358625312c6c3bf64ed51d17d210ce21af1639c774cabf5735a
9651d7d91fc6a',
 'channel_binding': 'tls-unique',
 'pubkey':
'4a3838f6fe75251e613329d53fc69b262d5eac97fb1d73bebbaed
4015b53c862',
 'signature':
'aa05f4cd7747d36b79443f1d4703a681e107edc085d876b508
714e2a3a8135bacaae1c018452c4acb3ad2818aa97a6d23e5ac7e3
734c7b1f40e6232a70938205a6f5a1f034a28090b195fb2ce2
454a82532f5c8baf6ba1dfb5ddae63c09ce72f'}]
<<

WAMP-Transmit(-, -) >>
 AUTHENTICATE::
 [5,

'25114474580d6e99a6126b091b4565c23db567d686c5b8c
3a94e3f2f09dc80300c5b40a124236733fa56396df721eb12ac
092362379bd5b27b4db9e2beaa1408dcf59bd361a2921448f0e

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 178

45e12f303097924f5798a83b895cf6b179a6d664d0a',
 {}]
>>

WAMP-Receive(-, -) <<
 WELCOME::
 [2,
 7325966140445461,
 {'authextra': {'x_cb_node': 'intel-nuci7-49879',
 'x_cb_peer': 'tcp4:127.0.0.1:54046',
 'x_cb_pid': 49987,
 'x_cb_worker': 'worker001'},
 'authid': 'client01@example.com',
 'authmethod': 'cryptosign',
 'authprovider': 'static',
 'authrole': 'device',
 'realm': 'devices',
 'roles': {'broker': {'features': {'event_retention': True,
 'pattern_based_subscription': True,
 'publisher_exclusion': True,
 'publisher_identification': True,
 'session_meta_api': True,
 'subscriber_blackwhite_listing': True,
 'subscription_meta_api': True,
 'subscription_revocation': True}},
 'dealer': {'features': {'call_canceling': True,
 'caller_identification': True,
 'pattern_based_registration': True,
 'progressive_call_results': True,
 'registration_meta_api': True,
 'registration_revocation': True,
 'session_meta_api': True,
 'shared_registration': True,
 'testament_meta_api': True}}},
 'x_cb_node': 'intel-nuci7-49879',
 'x_cb_peer': 'tcp4:127.0.0.1:54046',
 'x_cb_pid': 49987,
 'x_cb_worker': 'worker001'}]
<<
2022-07-13T17:38:29+0200 session joined: {'authextra': {'x_cb_node': 'intel-
nuci7-49879',
 'x_cb_peer': 'tcp4:127.0.0.1:54046',
 'x_cb_pid': 49987,
 'x_cb_worker': 'worker001'},
 'authid': 'client01@example.com',
 'authmethod': 'cryptosign',
 'authprovider': 'static',
 'authrole': 'device',
 'realm': 'devices',
 'resumable': False,
 'resume_token': None,
 'resumed': False,
 'serializer': 'cbor.batched',
 'session': 7325966140445461,
 'transport': {'channel_framing': 'websocket',

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 179

 'channel_id': {'tls-unique': b'\xe9s\xbe\xe2M\xce\xa9\xe2'
 b'\x06%\xf9I\xc0\xe3\xcd('
 b'\xd62\xcc\xbe\xfeI\x07\xc2'
 b'\xfa\xc2r\x87\x10\xf7\xb1`'},
 'channel_serializer': None,
 'channel_type': 'tls',
 'http_cbtid': None,
 'http_headers_received': None,
 'http_headers_sent': None,
 'is_secure': True,
 'is_server': False,
 'own': None,
 'own_fd': -1,
 'own_pid': 50690,
 'own_tid': 50690,
 'peer': 'tcp4:127.0.0.1:8080',
 'peer_cert': None,
 'websocket_extensions_in_use': None,
 'websocket_protocol': None}}

WAMP-Transmit(7325966140445461, client01@example.com) >>
 GOODBYE::
 [6, {}, 'wamp.close.normal']
>>

WAMP-Receive(7325966140445461, client01@example.com) <<
 GOODBYE::
 [6, {}, 'wamp.close.normal']
<<

13.4.6.3. Example 3
with router challenge
with TLS channel binding
with client trustroot and certificates

•
•
•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 180

WAMP-Transmit(-, -) >>
 HELLO::
 [1,
 'devices',
 {'authextra': {'certificates': [({'domain': {'name': 'WMP', 'version': '1'},
 'message': {'bootedAt': 1658765756680628959,
 'chainId': 1,
 'csPubKey':
'12ae0184b180e9a9c5e45be4a1afbce3c6491320063701cd9c4
011a777d04089',
 'delegate':
'0xf5173a6111B2A6B3C20fceD53B2A8405EC142bF6',
 'meta': '',
 'validFrom': 15212703,
 'verifyingContract':
'0xf766Dc789CF04CD18aE75af2c5fAf2DA6650Ff57'},
 'primaryType': 'EIP712DelegateCertificate',
 'types': {'EIP712DelegateCertificate': [{'name': 'chainId',
 'type': 'uint256'},
 {'name': 'verifyingContract',
 'type': 'address'},
 {'name': 'validFrom',
 'type': 'uint256'},
 {'name': 'delegate',
 'type': 'address'},
 {'name': 'csPubKey',
 'type': 'bytes32'},
 {'name': 'bootedAt',
 'type': 'uint64'},
 {'name': 'meta',
 'type': 'string'}],
 'EIP712Domain': [{'name': 'name',
 'type': 'string'},
 {'name': 'version',
 'type': 'string'}]}},

'8fe06bb269110c6bc0e011ea2b7da07091c674f7fe67458c180
5157157da702b70b56cdf662666dc386820ded0116b6b8415
1df1ed65210eeecd7e477cdb765b1b'),
 ({'domain': {'name': 'WMP', 'version': '1'},
 'message': {'capabilities': 12,
 'chainId': 1,
 'issuer':
'0xf766Dc789CF04CD18aE75af2c5fAf2DA6650Ff57',
 'meta': '',
 'realm':
'0xA6e693CC4A2b4F1400391a728D26369D9b82ef96',
 'subject':
'0xf5173a6111B2A6B3C20fceD53B2A8405EC142bF6',
 'validFrom': 15212703,
 'verifyingContract':
'0xf766Dc789CF04CD18aE75af2c5fAf2DA6650Ff57'},
 'primaryType': 'EIP712AuthorityCertificate',
 'types': {'EIP712AuthorityCertificate': [{'name': 'chainId',
 'type': 'uint256'},

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 181

 {'name': 'verifyingContract',
 'type': 'address'},
 {'name': 'validFrom',
 'type': 'uint256'},
 {'name': 'issuer',
 'type': 'address'},
 {'name': 'subject',
 'type': 'address'},
 {'name': 'realm',
 'type': 'address'},
 {'name': 'capabilities',
 'type': 'uint64'},
 {'name': 'meta',
 'type': 'string'}],
 'EIP712Domain': [{'name': 'name',
 'type': 'string'},
 {'name': 'version',
 'type': 'string'}]}},

'0c0eb60a108dbd72a204b41c1d18505358e4e7886b0c97871
92a33ac9e0f94c92ce158f8de576fa9cccf28a8c9404ed66c2d355e
a4ae7ee65cff0b73215b91bb1c'),
 ({'domain': {'name': 'WMP', 'version': '1'},
 'message': {'capabilities': 63,
 'chainId': 1,
 'issuer':
'0xf766Dc789CF04CD18aE75af2c5fAf2DA6650Ff57',
 'meta': '',
 'realm':
'0xA6e693CC4A2b4F1400391a728D26369D9b82ef96',
 'subject':
'0xf766Dc789CF04CD18aE75af2c5fAf2DA6650Ff57',
 'validFrom': 15212703,
 'verifyingContract':
'0xf766Dc789CF04CD18aE75af2c5fAf2DA6650Ff57'},
 'primaryType': 'EIP712AuthorityCertificate',
 'types': {'EIP712AuthorityCertificate': [{'name': 'chainId',
 'type': 'uint256'},
 {'name': 'verifyingContract',
 'type': 'address'},
 {'name': 'validFrom',
 'type': 'uint256'},
 {'name': 'issuer',
 'type': 'address'},
 {'name': 'subject',
 'type': 'address'},
 {'name': 'realm',
 'type': 'address'},
 {'name': 'capabilities',
 'type': 'uint64'},
 {'name': 'meta',
 'type': 'string'}],
 'EIP712Domain': [{'name': 'name',
 'type': 'string'},
 {'name': 'version',

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 182

 'type': 'string'}]}},

'be35c8d6ae735d3bd8b5e27b1e1a067eba53e6a1cb4ef0f607c471
7435e8ffa676246e7d08dfb4e83c78ad26f423b727b5d2c9062
7bdf6c94c1dbdf01979c34b1c')],
 'challenge':
'2763e7fdb1c34a74e8497daf6c913744d11161a94cec3b16aeec
60a788612e17',
 'channel_binding': 'tls-unique',
 'pubkey':
'12ae0184b180e9a9c5e45be4a1afbce3c6491320063701cd9c4
011a777d04089',
 'trustroot': '0xf766Dc789CF04CD18aE75af2c5fAf2DA6650Ff57'},
 'authmethods': ['cryptosign'],
 'roles': {'callee': {'features': {'call_canceling': True,
 'caller_identification': True,
 'pattern_based_registration': True,
 'progressive_call_results': True,
 'registration_revocation': True,
 'shared_registration': True}},
 'caller': {'features': {'call_canceling': True,
 'caller_identification': True,
 'progressive_call_results': True}},
 'publisher': {'features': {'publisher_exclusion': True,
 'publisher_identification': True,
 'subscriber_blackwhite_listing': True}},
 'subscriber': {'features': {'pattern_based_subscription': True,
 'publisher_identification': True,
 'subscription_revocation': True}}}}]
>>

WAMP-Receive(-, -) <<
 CHALLENGE::
 [4,
 'cryptosign',
 {'challenge':
'e4b40f72f9604754789d472225483bace926b9668d72c912
2545e540d8d98f23',
 'channel_binding': 'tls-unique',
 'pubkey':
'4a3838f6fe75251e613329d53fc69b262d5eac97fb1d73bebbaed
4015b53c862',
 'signature':
'ce456092998d796533d7ef2bab543300409d161066c9520c
9284df6bbfb82947b37fb78d69fd56e5118afec62e35e015c605
69af2e18ed92fedc738552242d039a38790e9c94064d89335
393d39973c14074cd1008d7266de74c641103e30609'}]
<<

WAMP-Transmit(-, -) >>
 AUTHENTICATE::
 [5,

'16c89629e72aff3f44661e701341b2221a2fa9d93205826fad
85e70d3a8dab70a8f54314c14d470ebeb77a0dd16c833928c01

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 183

134a52b2e73862b7d3f258b600059ef9181d4370b6d19e76
91e9a407f29784315dfc949d4696ce5e1f6535ba73d',
 {}]
>>

WAMP-Receive(-, -) <<
 WELCOME::
 [2,
 869996509191260,
 {'authextra': {'x_cb_node': 'intel-nuci7-30969',
 'x_cb_peer': 'tcp4:127.0.0.1:59172',
 'x_cb_pid': 31090,
 'x_cb_worker': 'worker001'},
 'authid': '0xf5173a6111B2A6B3C20fceD53B2A8405EC142bF6',
 'authmethod': 'cryptosign',
 'authprovider': 'static',
 'authrole': 'user',
 'realm': 'realm1',
 'roles': {'broker': {'features': {'event_retention': True,
 'pattern_based_subscription': True,
 'publisher_exclusion': True,
 'publisher_identification': True,
 'session_meta_api': True,
 'subscriber_blackwhite_listing': True,
 'subscription_meta_api': True,
 'subscription_revocation': True}},
 'dealer': {'features': {'call_canceling': True,
 'caller_identification': True,
 'pattern_based_registration': True,
 'progressive_call_results': True,
 'registration_meta_api': True,
 'registration_revocation': True,
 'session_meta_api': True,
 'shared_registration': True,
 'testament_meta_api': True}}},
 'x_cb_node': 'intel-nuci7-30969',
 'x_cb_peer': 'tcp4:127.0.0.1:59172',
 'x_cb_pid': 31090,
 'x_cb_worker': 'worker001'}]
<<

WAMP-Transmit(869996509191260,
0xf5173a6111B2A6B3C20fceD53B2A8405EC142bF6) >>
 GOODBYE::
 [6, {}, 'wamp.close.normal']
>>

WAMP-Receive(869996509191260,
0xf5173a6111B2A6B3C20fceD53B2A8405EC142bF6) <<
 GOODBYE::
 [6, {}, 'wamp.close.normal']
<<

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 184

13.5. Dynamic Authentication API
Write me.

13.6. Authorization
WAMP allows user services to integrate seamlessly while enabling Clients to perform Actions,
namely, to

register procedures using fully qualified URIs or URI patterns in order to receive invocations
call procedures at (fully qualified) URIs
subscribe to topics using fully qualified URIs or URI patterns in order to receive events
publish events to (fully qualified) URIs

Performing these actions requires Clients to have an open Session to the same shared Realm.

A Session is established between a Client to a Router, and is initiated by a Client.

Sessions MAY be required to Authenticate access to a Realm hosted by a Router.

Authentication is the sequence of operations that allow a Router to verify the identity of a Session,
often as a prerequisite to allowing access to resources within a Realm.

When the Session authenticates to a Router successfully, the Router will have established the

realm|string,

authrole|string, and

authid|string

for that Session running in the Client.

The triple (realm, authrole, authid) is called Principal, and a Session is authenticated under that
Principal.

At any moment, there can be zero, one, or many Sessions with different session ids authenticated
under the same Principal.

Sessions MAY be required to Authorize in order to perform a specific Action on an URI - or an URI
pattern - within a Realm.

This distinction between Authentication and Authorization follows the established practice called
"AAA":

Authentication: Establishes who it is ("subject")
Authorization: Decides within a Realm whether an Action ("operation") on an URI or URI
pattern ("object") is allowed for the requesting Principal ("subject")

•
•
•
•

•

•

•

•
•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 185

Accounting: Records, for a Realm, what Action ("operation") on what URI or URI pattern
("object") was requested by which Principal ("subject"), and whether it was allowed or
denied

•

14. Advanced Security Features
This section covers some advanced features and techniques provided by WAMP mainly but not
limited to security and cryptography.

14.1. Payload Passthru Mode
In some situations, you may want to reduce the access the router has to the information users
transmit, or payload data is presented in some specific format that can not be simply recognized
by WAMP router serializer.

Here are some use cases:

Using WAMP via gateways to other technologies like MQTT Brokers or AMQP Queues. So the
actual payload is, for example, MQTT message that should be delivered to a WAMP topic as
is.
Sensitive user data that should be delivered to a target Callee without any possibility of
unveiling it in transit.

The above use cases can be fulfilled with the Payload Passthru Mode feature. This feature allows:

Specifying additional attributes within CALL, PUBLISH, EVENT, YIELD, RESULT messages to
signal the Router to skip payload inspection/conversion.
The forwarding of these additional attributes via INVOCATION and ERROR messages

Encrypting and decrypting payload using cryptographic algorithms.
Providing additional information about payload format and type.

Feature Announcement

Support for this advanced feature MUST be announced by Callers (role := "caller"), Callees (role :=
"callee"), Dealers (role := "dealer"), Publishers (role := "publisher"), Subscribers (role := "subscriber")

and Brokers (role := "broker") via

HELLO.Details.roles.<role>.features.payload_passthru_mode|bool := true

Payload Passthru Mode can work only if all three nodes (Caller, Dealer, Callee or Publisher,
Broker, Subscriber) support and announced this feature.

Cases where a Caller sends a CALL message with payload passthru without announcing it during

the HELLO handshake MUST be treated as PROTOCOL ERRORS and underlying WAMP

connections must be aborted with the wamp.error.protocol_violation error reason.

•

•

•

•

•
•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 186

Cases where a Caller sends a CALL message with payload passthru to a Dealer, the latter not

announcing payload passthru support during WELCOME handshake MUST be treated as
PROTOCOL ERRORS and the underlying WAMP connections must be aborted with the
wamp.error.protocol_violation error reason.

Cases where a Caller sends a CALL message with payload passthru to a Dealer that supports this

feature, which then must be routed to a Callee which doesn't support payload passthru, MUST be
treated as APPLICATION ERRORS and the Dealer MUST respond to the Caller with a
wamp.error.feature_not_supported error message.

Cases where a Publisher sends a PUBLISH message with payload passthru, without announcing it

during HELLO handshake, MUST be treated as PROTOCOL ERRORS and the underlying WAMP

connections must be aborted with the wamp.error.protocol_violation error reason.

Cases where a Publisher sends a PUBLISH message with payload passthru to a Broker, with the

latter not announcing payload passthru support during the WELCOME handshake, MUST be
treated as PROTOCOL ERRORS and the underlying WAMP connections must be aborted with the
wamp.error.protocol_violation error reason.

Cases where a Publisher sends a PUBLISH message with payload passthru to a Broker that supports

this feature, which then must be routed to a Subscriber which doesn't support payload passthru,
cannot be recognized at the protocol level due to asynchronous message processing and must be
covered at the Subscriber side.

Cases where a Callee sends a YIELD message with payload passthru without announcing it during

the HELLO handshake MUST be treated as PROTOCOL ERRORS and the underlying WAMP

connections must be aborted with the wamp.error.protocol_violation error reason.

Cases where a Callee sends a YIELD message with payload passthru to a Dealer, with the latter not

announcing payload passthru support during the WELCOME handshake, MUST be treated as
PROTOCOL ERRORS and the underlying WAMP connections must be aborted with the
wamp.error.protocol_violation error reason.

Cases where a Callee sends a YIELD message with payload passthru to a Dealer that supports this

feature, which then must be routed to the Caller which doesn't support payload passthru, MUST be
treated as APPLICATION ERRORS and the Dealer MUST respond to the Callee with a
wamp.error.feature_not_supported error message.

Message Attributes

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 187

To use payload passthru mode, the options for CALL, PUBLISH and YIELD messages MUST be
extended with additional attributes. These additional attributes must be forwarded via
INVOCATION, EVENT and RESULT messages, respectively, as well as ERROR messages in the case of
failures.

ppt_scheme Attribute

 CALL.Options.ppt_scheme|string
 CALL.Options.ppt_serializer|string
 CALL.Options.ppt_cipher|string
 CALL.Options.ppt_keyid|string

 INVOCATION.Details.ppt_scheme|string
 INVOCATION.Details.ppt_serializer|string
 INVOCATION.Details.ppt_cipher|string
 INVOCATION.Details.ppt_keyid|string

 YIELD.Options.ppt_scheme|string
 YIELD.Options.ppt_serializer|string
 YIELD.Options.ppt_cipher|string
 YIELD.Options.ppt_keyid|string

 RESULT.Details.ppt_scheme|string
 RESULT.Details.ppt_serializer|string
 RESULT.Details.ppt_cipher|string
 RESULT.Details.ppt_keyid|string

 ERROR.Details.ppt_scheme|string
 ERROR.Details.ppt_serializer|string
 ERROR.Details.ppt_cipher|string
 ERROR.Details.ppt_keyid|string

 PUBLISH.Options.ppt_scheme|string
 PUBLISH.Options.ppt_serializer|string
 PUBLISH.Options.ppt_cipher|string
 PUBLISH.Options.ppt_keyid|string

 EVENT.Details.ppt_scheme|string
 EVENT.Details.ppt_serializer|string
 EVENT.Details.ppt_cipher|string
 EVENT.Details.ppt_keyid|string

 ERROR.Options.ppt_scheme|string
 ERROR.Options.ppt_serializer|string
 ERROR.Options.ppt_cipher|string
 ERROR.Options.ppt_keyid|string

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 188

The ppt_scheme identifies the Payload Schema. It is a required string attribute. For End-2-End
Encryption flow this attribute can contain the name or identifier of a key management provider
that is known to the target peer, so it can be used with help of additional ppt_* attributes to
obtain information about encryption keys. For gateways and external schemas this can contain
the name of related technology. The one predefined is mqtt. Others may be introduced later. A

Router can recognize that Payload Passthru Mode is in use by checking the existence and non-

empty value of this attribute within the options of CALL, PUBLISH and YIELD messages.

ppt_serializer Attribute

The ppt_serializer attribute is optional. It specifies what serializer was used to encode the payload.

It can be a native value to indicate that the incoming data is tunneling through other technologies

specified by the ppt_scheme, or it can be ordinary json, msgpack, cbor, flatbuffers data serializers.

For some predefined ppt_scheme schemas this option may be omitted as schema defines the
concrete serializer. See predefined schemas below.

ppt_cipher Attribute

The ppt_cipher attribute is optional. It is required if the payload is encrypted. This attribute
specifies the cryptographic algorithm that was used to encrypt the payload. It can be
xsalsa20poly1305, aes256gcm for now.

ppt_keyid Attribute

The ppt_keyid attribute is optional. This attribute can contain the encryption key id that was used

to encrypt the payload. The ppt_keyid attribute is a string type. The value can be a hex-encoded
string, URI, DNS name, Ethereum address, UUID identifier - any meaningful value which allows
the target peer to choose a private key without guessing. The format of the value may depend on
the ppt_scheme attribute.

ppt_ Predefined Schemes

MQTT Predefined Scheme

Attribute Required? Value

ppt_scheme Y mqtt

ppt_serializer N* native, json, msgpack, cbor

ppt_cipher N -

ppt_keyid N -

Table 15

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 189

*: If ppt_serializer is not provided then it is assuming as native. So no additional serialization will
be applied to payload and payload will be serialized within WAMP message with session
serializer.

End-to-End Encryption Predefined Scheme

For End-to-End Encryption flow both peers must support chosen ppt_serializer regardless of their
own session serializer.

Attribute Required? Value

ppt_scheme Y wamp

ppt_serializer Y cbor, flatbuffers

ppt_cipher N xsalsa20poly1305, aes256gcm

ppt_keyid N *

Table 16

*: The least significant 20 bytes (160 bits) of the SHA256 of the public key (32 bytes) of the data
encryption key, as a hex-encoded string with prefix 0x and either uppercase/lowercase
alphabetic characters, encoding a checksum according to EIP55.

Custom Scheme Example

Attribute Required? Value

ppt_scheme Y x_my_ppt

ppt_serializer N custom

ppt_cipher N custom

ppt_keyid N custom

Table 17

When Payload Passthru Mode is used for gateways to other technologies, such as MQTT Brokers,

then the ppt_serializer attribute may be set to the native value. This means that the payload is not
to be modified by WAMP peers, nor serialized in any manner, and is delivered as-is from the
originating peer. Another possible case is when the ppt_serializer attribute is set to any valid

serializer, for example msgpack. In this case the originating WAMP client peer first applies

ppt_serializer to serialize the payload (without encryption), then the resulting binary payload is
embedded in the WAMP message, the latter having possibly a different serializer depending on
the one chosen during WAMP Session establishment.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 190

Important Note Regarding JSON Serialization

With Payload Passthru Mode, payloads are treated as binary. To send these binary payloads, the
WAMP session serializer MUST support byte arrays. Most serialization formats known to WAMP
support byte arrays, but JSON does not support them natively. To use Payload Passthru Mode with
a JSON serializer, WAMP peers MUST perform the special Binary serialization in JSON. This
conversion may have unacceptable overhead, so it is generally advised to use WAMP session
serializers with native byte array support, for example, MessagePack, CBOR, or FlatBuffers.

Message Structure

When Payload Passthru Mode is in use, the message payload MUST be sent as one binary item

within Arguments|list, while ArgumentsKw|dict MUST be absent or empty.

Since many WAMP messages assume the possibility of simultaneous use of Arguments|list and

ArgumentsKw|dict, WAMP client implementations must package arguments into the following

hash table and then serialize it and transmit as a single element within Arguments|list.

This will allow maintaining a single interface for client applications, regardless of whether the
Payload Passthru Mode mode, or especially Payload End-to-End Encryption which is built on top of

Payload End-to-End Encryption is used or not.

Example. Caller-to-Dealer CALL with encryption and key ID

Example. Caller-to-Dealer progressive CALL with encryption and key ID.

{
 "args": Arguments|list,
 "kwargs": ArgumentsKw|dict
}

 [
 48,
 25471,
 {
 "ppt_scheme": "wamp",
 "ppt_serializer": "cbor",
 "ppt_cipher": "xsalsa20poly1305",
 "ppt_keyid": "GTtQ37XGJO2O4R8Dvx4AUo8pe61D9evIWpKGQAPdOh0="
 },
 "com.myapp.secret_rpc_for_sensitive_data",
 [Payload|binary]
]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 191

Note that nothing prevents the use of Payload Passthru Mode with other features such as, for

example, Progressive Call Results or Progressive Call Invocations.

Example. Caller-to-Dealer CALL with MQTT payload. Specifying "ppt_serializer": "native" means that
the original MQTT message payload is passed as WAMP payload message as is, without any
transcoding.

Example. Caller-to-Dealer CALL with MQTT payload. Specifying "ppt_scheme": "mqtt" simply
indicates that the original source of payload data is received from a related system. Specifying
"ppt_serializer": "json" means that the original MQTT message payload was parsed and encoded

with the json serializer before embedding it into WAMP message.

 [
 48,
 25471,
 {
 "ppt_scheme": "wamp",
 "ppt_serializer": "flatbuffers",
 "ppt_cipher": "xsalsa20poly1305",
 "ppt_keyid": "GTtQ37XGJO2O4R8Dvx4AUo8pe61D9evIWpKGQAPdOh0=",
 "progress": true
 },
 "com.myapp.progressive_rpc_for_sensitive_data",
 [Payload|binary]
]

 [
 48,
 25471,
 {
 "ppt_scheme": "mqtt",
 "ppt_serializer": "native"
 },
 "com.myapp.mqtt_processing",
 [Payload|binary]
]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 192

Example. Dealer-to-Callee INVOCATION with encryption and key ID

Example. Dealer-to-Callee INVOCATION with MQTT payload

Example. Callee-to-Dealer YIELD with encryption and key ID

 [
 48,
 25471,
 {
 "ppt_scheme": "mqtt",
 "ppt_serializer": "json"
 },
 "com.myapp.mqtt_processing",
 [Payload|binary]
]

 [
 68,
 35477,
 1147,
 {
 "ppt_scheme": "wamp",
 "ppt_serializer": "cbor",
 "ppt_cipher": "xsalsa20poly1305",
 "ppt_keyid": "GTtQ37XGJO2O4R8Dvx4AUo8pe61D9evIWpKGQAPdOh0="
 },
 [Payload|binary]
]

 [
 68,
 35479,
 3344,
 {
 "ppt_scheme": "mqtt",
 "ppt_serializer": "native"
 },
 [Payload|binary]
]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 193

Example. Callee-to-Dealer progressive YIELD with encryption and key ID

Nothing prevents the use of Payload Passthru Mode with other features such as, for example,

Progressive Call Results.

Example. Dealer-to-Caller RESULT with encryption and key ID

Example. Dealer-to-Caller progressive RESULT with encryption and key ID

 [
 70,
 87683,
 {
 "ppt_scheme": "wamp",
 "ppt_serializer": "flatbuffers",
 "ppt_cipher": "xsalsa20poly1305",
 "ppt_keyid": "GTtQ37XGJO2O4R8Dvx4AUo8pe61D9evNSpGMDQWdOh1="
 },
 [Payload|binary]
]

 [
 70,
 87683,
 {
 "ppt_scheme": "wamp",
 "ppt_serializer": "flatbuffers",
 "ppt_cipher": "xsalsa20poly1305",
 "ppt_keyid": "GTtQ37XGJO2O4R8Dvx4AUo8pe61D9evNSpGMDQWdOh1=",
 "progress": true
 },
 [Payload|binary]
]

 [
 50,
 77133,
 {
 "ppt_scheme": "wamp",
 "ppt_serializer": "flatbuffers",
 "ppt_cipher": "xsalsa20poly1305",
 "ppt_keyid": "GTtQ37XGJO2O4R8Dvx4AUo8pe61D9evNSpGMDQWdOh1="
 },
 [Payload|binary]
]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 194

Nothing prevents the use of Payload Passthru Mode with other features such as, for example,

Progressive Call Results.

Example. Callee-to-Dealer ERROR with encryption and key ID

Example. Publishing event to a topic with encryption and key ID

Example. Receiving event for a topic with encryption and key ID

 [
 50,
 77133,
 {
 "ppt_scheme": "wamp",
 "ppt_serializer": "flatbuffers",
 "ppt_cipher": "xsalsa20poly1305",
 "ppt_keyid": "GTtQ37XGJO2O4R8Dvx4AUo8pe61D9evNSpGMDQWdOh1=",
 "progress": true
 },
 [Payload|binary]
]

 [
 8,
 68,
 87683,
 {
 "ppt_scheme": "wamp",
 "ppt_serializer": "cbor",
 "ppt_cipher": "xsalsa20poly1305",
 "ppt_keyid": "GTtQ37XGJO2O4R8Dvx4AUo8pe61D9evNSpGMDQWdOh1="
 },
 "com.myapp.invalid_revenue_year",
 [Payload|binary]
]

 [
 16,
 45677,
 {
 "ppt_scheme": "wamp",
 "ppt_serializer": "cbor",
 "ppt_cipher": "xsalsa20poly1305",
 "ppt_keyid": "GTtQ37XGJO2O4R8Dvx4AUo8pe61D9evNSpGMDQWdOh1="
 },
 "com.myapp.mytopic1",
 [Payload|binary]
]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 195

About Supported Serializers and Cryptographic Ciphers

WAMP serves as infrastructure for delivering messages between peers. Regardless of what
encryption algorithm and serializer were chosen for Payload Passthru Mode, a Router shall not

inspect and analyze the ppt_ options and payload of encrypted messages. The application is
responsible for choosing serializers and ciphers known to every peer involved in message
processing.

 [
 36,
 5512315355,
 4429313566,
 {
 "ppt_scheme": "wamp",
 "ppt_serializer": "flatbuffers",
 "ppt_cipher": "xsalsa20poly1305",
 "ppt_keyid": "GTtQ37XGJO2O4R8Dvx4AUo8pe61D9evNSpGMDQWdOh1="
 },
 [Payload|binary]
]

14.2. Payload End-to-End Encryption
TBD

15. Advanced Transports and Serializers
The only requirements that WAMP expects from a transport are: the transport must be message-
based, bidirectional, reliable and ordered. This allows WAMP to run over different transports
without any impact at the application layer.

Besides the WebSocket transport, the following WAMP transports are currently specified:

RawSocket Transport
Batched WebSocket Transport
LongPoll Transport
Multiplexed Transport

Other transports such as HTTP 2.0 ("SPDY") or UDP might be defined in the future.

•
•
•
•

15.1. RawSocket Transport
WAMP-over-RawSocket is an (alternative) transport for WAMP that uses length-prefixed, binary
messages - a message framing different from WebSocket.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 196

Compared to WAMP-over-WebSocket, WAMP-over-RawSocket is simple to implement, since there
is no need to implement the WebSocket protocol which has some features that make it non-trivial
(like a full HTTP-based opening handshake, message fragmentation, masking and variable length
integers).

WAMP-over-RawSocket has even lower overhead than WebSocket, which can be desirable in
particular when running on local connections like loopback TCP or Unix domain sockets. It is
also expected to allow implementations in microcontrollers in under 2KB RAM.

WAMP-over-RawSocket can run over TCP, TLS, Unix domain sockets or any reliable streaming
underlying transport. When run over TLS on the standard port for secure HTTPS (443), it is also
able to traverse most locked down networking environments such as enterprise or mobile
networks (unless man-in-the-middle TLS intercepting proxies are in use).

However, WAMP-over-RawSocket cannot be used with Web browser clients, since browsers do
not allow raw TCP connections. Browser extensions would do, but those need to be installed in a
browser. WAMP-over-RawSocket also (currently) does not support transport-level compression as
WebSocket does provide (permessage-deflate WebSocket extension).

Endianess

WAMP-over-RawSocket uses network byte order ("big-endian"). That means, given a unsigned 32
bit integer

the first octet sent out to (or received from) the wire is 0x11 and the last octet sent out (or
received) is 0x44.

Here is how you would convert octets received from the wire into an integer in Python:

The integer received has the value 287454020.

And here is how you would send out an integer to the wire in Python:

The octets to be sent are b"\x11\x22\x33\x44".

Handshake: Client-to-Router Request

 0x 11 22 33 44

import struct

octets_received = b"\x11\x22\x33\x44"
i = struct.unpack(">L", octets_received)[0]

octets_to_be_send = struct.pack(">L", i)

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 197

WAMP-over-RawSocket starts with a handshake where the client connecting to a router sends 4
octets:

The first octet is a magic octet with value 0x7F. This value is chosen to avoid any possible
collision with the first octet of a valid HTTP request (see here and here). No valid HTTP request
can have 0x7F as its first octet.

By using a magic first octet that cannot appear in a regular HTTP request, WAMP-over-
RawSocket can be run e.g. on the same TCP listening port as WAMP-over-WebSocket or
WAMP-over-LongPoll.

The second octet consists of a 4 bit LENGTH field and a 4 bit SERIALIZER field.

The LENGTH value is used by the Client to signal the maximum message length of messages it is
willing to receive. When the handshake completes successfully, a Router MUST NOT send
messages larger than this size.

The possible values for LENGTH are:

This means a Client can choose the maximum message length between 512 and 16M octets.

The SERIALIZER value is used by the Client to request a specific serializer to be used. When the
handshake completes successfully, the Client and Router will use the serializer requested by the
Client.

The possible values for SERIALIZER are:

 MSB LSB
 31 0
 0111 1111 LLLL SSSS RRRR RRRR RRRR RRRR

 0: 2**9 octets
 1: 2**10 octets
 ...
 14: 2**23 octets
 15: 2**24 octets

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 198

http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html#sec5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec2.html#sec2.2

Here is a Python program that prints all (currently) permissible values for the second octet:

The third and forth octet are reserved and MUST be all zeros for now.

Handshake: Router-to-Client Reply

After a Client has connected to a Router, the Router will first receive the 4 octets handshake
request from the Client.

If the first octet differs from 0x7F, it is not a WAMP-over-RawSocket request. Unless the Router
also supports other transports on the connecting port (such as WebSocket or LongPoll), the
Router MUST fail the connection.

Here is an example of how a Router could parse the second octet in a Clients handshake request:

 0: illegal
 1: JSON
 2: MessagePack
 3: CBOR
 4: UBJSON
 5: FlatBuffers
 6 - 15: reserved for future serializers

SERMAP = {
 1: 'json',
 2: 'msgpack',
 3: 'cbor',
 4: 'ubjson',
 5: 'flatbuffers',
}

map serializer / max. msg length to RawSocket handshake
request or success reply (2nd octet)
for ser in SERMAP:
 for l in range(16):
 octet_2 = (l << 4) | ser
 print("serializer: {}, maxlen: {} => 0x{:02x}".format(SERMAP[ser], 2 ** (l + 9), octet_2))

map RawSocket handshake request (2nd octet) to
serializer / max. msg length
for i in range(256):
 ser_id = i & 0x0f
 if ser_id != 0:
 ser = SERMAP.get(ser_id, 'currently undefined')
 maxlen = 2 ** ((i >> 4) + 9)
 print("{:02x} => serializer: {}, maxlen: {}".format(i, ser, maxlen))
 else:
 print("fail the connection: illegal serializer value")

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 199

When the Router is willing to speak the serializer requested by the Client, it will answer with a 4
octets response of identical structure as the Client request:

Again, the first octet MUST be the value 0x7F. The third and forth octets are reserved and MUST
be all zeros for now.

In the second octet, the Router MUST echo the serializer value in SERIALIZER as requested by the
Client.

Similar to the Client, the Router sets the LENGTH field to request a limit on the length of messages
sent by the Client.

During the connection, Router MUST NOT send messages to the Client longer than the LENGTH
requested by the Client, and the Client MUST NOT send messages larger than the maximum
requested by the Router in its handshake reply.

If a message received during a connection exceeds the limit requested, a Peer MUST fail the
connection.

When the Router is unable to speak the serializer requested by the Client, or it is denying the
Client for other reasons, the Router replies with an error:

An error reply has 4 octets: the first octet is again the magic 0x7F, and the third and forth octet
are reserved and MUST all be zeros for now.

The second octet has its lower 4 bits zero'ed (which distinguishes the reply from an success/
accepting reply) and the upper 4 bits encode the error:

 MSB LSB
 31 0
 0111 1111 LLLL SSSS RRRR RRRR RRRR RRRR

 MSB LSB
 31 0
 0111 1111 EEEE 0000 RRRR RRRR RRRR RRRR

 0: illegal (must not be used)
 1: serializer unsupported
 2: maximum message length unacceptable
 3: use of reserved bits (unsupported feature)
 4: maximum connection count reached
 5 - 15: reserved for future errors

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 200

Note that the error code 0 MUST NOT be used. This is to allow storage of error state in a
host language variable, while allowing 0 to signal the current state "no error"

Here is an example of how a Router might create the second octet in an error response:

The Client - after having sent its handshake request - will wait for the 4 octets from Router
handshake reply.

Here is an example of how a Client might parse the second octet in a Router handshake reply:

Serialization

To send a WAMP message, the message is serialized according to the WAMP serializer agreed in
the handshake (e.g. JSON, MessagePack, CBOR, UBJSON or FlatBuffers).

The length of the serialized messages in octets MUST NOT exceed the maximum requested by the
Peer.

If the serialized length exceed the maximum requested, the WAMP message can not be sent to
the Peer. Handling situations like the latter is left to the implementation.

ERRMAP = {
 0: "illegal (must not be used)",
 1: "serializer unsupported",
 2: "maximum message length unacceptable",
 3: "use of reserved bits (unsupported feature)",
 4: "maximum connection count reached"
}

map error to RawSocket handshake error reply (2nd octet)
for err in ERRMAP:
 octet_2 = err << 4
 print("error: {} => 0x{:02x}").format(ERRMAP[err], err)

map RawSocket handshake reply (2nd octet)
for i in range(256):
 ser_id = i & 0x0f
 if ser_id:
 # verify the serializer is the one we requested!
 # if not, fail the connection!
 ser = SERMAP.get(ser_id, 'currently undefined')
 maxlen = 2 ** ((i >> 4) + 9)
 print("{:02x} => serializer: {}, maxlen: {}".format(i, ser, maxlen))
 else:
 err = i >> 4
 print("error: {}".format(ERRMAP.get(err, 'currently undefined')))

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 201

E.g. a Router that is to forward a WAMP EVENT to a Client which exceeds the maximum length
requested by the Client when serialized might:

drop the event (not forwarding to that specific client) and track dropped events
prohibit publishing to the topic already
remove the event payload, and send an event with extra information (payload_limit_exceeded
= true)

Framing

The serialized octets for a message to be sent are prefixed with exactly 4 octets.

The three least significant octets constitute an unsigned 24 bit integer that provides the length of
transport message payload following, excluding the 4 octets that constitute the prefix.

The most significant octet has the following structure

The four bits RRRR are reserved for future use and MUST be all zeros for now.

X is an extra (25th) bit used to encode the message payload length. This bit is only set when the

payload length is exactly 16M octets, with the 24 remaining L bits cleared:

When the payload length is 16M-1 octets, for example, the prefix would be:

The three bits TTT encode the type of the transport message:

•
•
•

 MSB LSB
 31 0
 RRRR XTTT LLLL LLLL LLLL LLLL LLLL LLLL

 MSB LSB
 7 0
 RRRR XTTT

 MSB LSB
 31 0
 RRRR 1TTT 0000 0000 0000 0000 0000 0000

 MSB LSB
 31 0
 RRRR 0TTT 1111 1111 1111 1111 1111 1111

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 202

For a regular WAMP message (TTT == 0), the length is the length of the serialized WAMP
message: the number of octets after serialization (excluding the 4 octets of the prefix).

For a PING message (TTT == 1), the length is the length of the arbitrary payload that follows. A

Peer MUST reply to each PING by sending exactly one PONG immediately, and the PONG MUST

echo back the payload of the PING exactly.

For receiving messages with WAMP-over-RawSocket, a Peer will usually read exactly 4 octets
from the incoming stream, decode the transport level message type and payload length, and then
receive as many octets as the length was giving.

When the transport level message type indicates a regular WAMP message, the transport level
message payload is unserialized according to the serializer agreed in the handshake and the
processed at the WAMP level.

 0: regular WAMP message
 1: PING
 2: PONG
 3-7: reserved

15.2. Message Batching
WAMP-over-Batched-WebSocket is a variant of WAMP-over-WebSocket where multiple WAMP
messages are sent in one WebSocket message.

Using WAMP message batching can increase wire level efficiency further. In particular when
using TLS and the WebSocket implementation is forcing every WebSocket message into a new
TLS segment.

WAMP-over-Batched-WebSocket is negotiated between Peers in the WebSocket opening
handshake by agreeing on one of the following WebSocket subprotocols:

wamp.2.json.batched

wamp.2.msgpack.batched

wamp.2.cbor.batched

Batching with JSON works by serializing each WAMP message to JSON as normally, appending
the single ASCII control character \30 (record separator) octet 0x1e to each serialized
messages, and packing a sequence of such serialized messages into a single WebSocket message:

•

•

•

 Serialized JSON WAMP Msg 1 | 0x1e |
 Serialized JSON WAMP Msg 2 | 0x1e | ...

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 203

http://en.wikipedia.org/wiki/Record_separator#Field_separators

Batching with MessagePack works by serializing each WAMP message to MessagePack as
normally, prepending a 32 bit unsigned integer (4 octets in big-endian byte order) with the length
of the serialized MessagePack message (excluding the 4 octets for the length prefix), and packing
a sequence of such serialized (length-prefixed) messages into a single WebSocket message:

With batched transport, even if only a single WAMP message is to be sent in a WebSocket
message, the (single) WAMP message needs to be framed as described above. In other words, a
single WAMP message is sent as a batch of length 1. Sending a batch of length 0 (no WAMP
message) is illegal and a Peer MUST fail the transport upon receiving such a transport message.

 Length of Msg 1 serialization (uint32) |
 serialized MessagePack WAMP Msg 1 | ...

15.3. HTTP Longpoll Transport
The Long-Poll Transport is able to transmit a WAMP session over plain old HTTP 1.0/1.1. This is
realized by the Client issuing HTTP/POSTs requests, one for sending, and one for receiving. Those
latter requests are kept open at the server when there are no messages currently pending to be
received.

Opening a Session

With the Long-Poll Transport, a Client opens a new WAMP session by sending a HTTP/POST
request to a well-known URL, e.g.

Here, http://mypp.com/longpoll is the base URL for the Long-Poll Transport and /open is a path
dedicated for opening new sessions.

The HTTP/POST request SHOULD have a Content-Type header set to application/json and MUST
have a request body with a JSON document that is a dictionary:

The (mandatory) protocols attribute specifies the protocols the client is willing to speak. The
server will chose one from this list when establishing the session or fail the request when no
protocol overlap was found.

The valid protocols are:

wamp.2.json.batched

 http://mypp.com/longpoll/open

 {
 "protocols": ["wamp.2.json"]
 }

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 204

wamp.2.json

wamp.2.msgpack.batched

wamp.2.msgpack

wamp.2.cbor.batched

wamp.2.cbor

The request path with this and subsequently described HTTP/POST requests MAY
contain a query parameter x with some random or sequentially incremented value:

http://mypp.com/longpoll/open?x=382913

The value is ignored, but may help in certain situations to prevent intermediaries from
caching the request.

Returned is a JSON document containing a transport ID and the protocol to speak:

As an implied side-effect, two HTTP endpoints are created

where transport_id is the transport ID returned from open, e.g.

Receiving WAMP Messages

The Client will then issue HTTP/POST requests (with empty request body) to

When there are WAMP messages pending downstream, a request will return with a single WAMP
message (unbatched modes) or a batch of serialized WAMP messages (batched mode).

The serialization format used is the one agreed during opening the session.

•

•

•

•

•

 {
 "protocol": "wamp.2.json",
 "transport": "kjmd3sBLOUnb3Fyr"
 }

 http://mypp.com/longpoll/<transport_id>/receive
 http://mypp.com/longpoll/<transport_id>/send

 http://mypp.com/longpoll/kjmd3sBLOUnb3Fyr/receive
 http://mypp.com/longpoll/kjmd3sBLOUnb3Fyr/send

 http://mypp.com/longpoll/kjmd3sBLOUnb3Fyr/receive

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 205

http://mypp.com/longpoll/open?x=382913

The batching uses the same scheme as with wamp.2.json.batched and wamp.2.msgpack.batched
transport over WebSocket.

Note: In unbatched mode, when there is more than one message pending, there will be
at most one message returned for each request. The other pending messages must be
retrieved by new requests. With batched mode, all messages pending at request time
will be returned in one batch of messages.

Sending WAMP Messages

For sending WAMP messages, the Client will issue HTTP/POST requests to

with request body being a single WAMP message (unbatched modes) or a batch of serialized
WAMP messages (batched mode).

The serialization format used is the one agreed during opening the session.

The batching uses the same scheme as with wamp.2.json.batched and wamp.2.msgpack.batched
transport over WebSocket.

Upon success, the request will return with HTTP status code 202 ("no content"). Upon error, the
request will return with HTTP status code 400 ("bad request").

Closing a Session

To orderly close a session, a Client will issue a HTTP/POST to

with an empty request body. Upon success, the request will return with HTTP status code 202
("no content").

 http://mypp.com/longpoll/kjmd3sBLOUnb3Fyr/send

 http://mypp.com/longpoll/kjmd3sBLOUnb3Fyr/close

15.4. Binary support in JSON
Binary data follows a convention for conversion to JSON strings.

A byte array is converted to a JSON string as follows:

convert the byte array to a Base64 encoded (host language) string
prepend the string with a \0 character

serialize the string to a JSON string

1.
2.

3.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 206

where Base64 encoding follows Section 4 of .

Example

Consider the byte array (hex representation):

This will get converted to Base64

prepended with \0

and serialized to a JSON string

A JSON string is unserialized to either a string or a byte array using the following procedure:

Unserialize a JSON string to a host language (Unicode) string
If the string starts with a \0 character, interpret the rest (after the first character) as Base64
and decode to a byte array
Otherwise, return the Unicode string

Below are complete Python and JavaScript code examples for conversion between byte arrays
and JSON strings.

Python

Here is a complete example in Python showing how byte arrays are converted to and from JSON:

[RFC4648]

 10e3ff9053075c526f5fc06d4fe37cdb

 EOP/kFMHXFJvX8BtT+N82w==

 \x00EOP/kFMHXFJvX8BtT+N82w==

 "\\u0000EOP/kFMHXFJvX8BtT+N82w=="

1.
2.

3.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 207

JavaScript

Here is a complete example in JavaScript showing how byte arrays are converted to and from
JSON:

import os, base64, json, sys, binascii

data_in = os.urandom(16)
print("In: {}".format(binascii.hexlify(data_in)))

encoding
encoded = json.dumps('\0' + base64.b64encode(data_in).
 decode('ascii'))

print("JSON: {}".format(encoded))

decoding
decoded = json.loads(encoded)
if type(decoded) == unicode:
 if decoded[0] == '\0':
 data_out = base64.b64decode(decoded[1:])
 else:
 data_out = decoded

print("Out: {}".format(binascii.hexlify(data_out)))

assert(data_out == data_in)

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 208

var data_in = new Uint8Array(new ArrayBuffer(16));

// initialize test data
for (var i = 0; i < data_in.length; ++i) {
 data_in[i] = i;
}
console.log(data_in);

// convert byte array to raw string
var raw_out = '';
for (var i = 0; i < data_in.length; ++i) {
 raw_out += String.fromCharCode(data_in[i]);
}

// base64 encode raw string, prepend with \0
// and serialize to JSON
var encoded = JSON.stringify("\0" + window.btoa(raw_out));
console.log(encoded); // "\u0000AAECAwQFBgcICQoLDA0ODw=="

// unserialize from JSON
var decoded = JSON.parse(encoded);

var data_out;
if (decoded.charCodeAt(0) === 0) {
 // strip first character and decode base64 to raw string
 var raw = window.atob(decoded.substring(1));

 // convert raw string to byte array
 var data_out = new Uint8Array(new ArrayBuffer(raw.length));
 for (var i = 0; i < raw.length; ++i) {
 data_out[i] = raw.charCodeAt(i);
 }
} else {
 data_out = decoded;
}

console.log(data_out);

15.5. Multiplexed Transport
A Transport may support the multiplexing of multiple logical transports over a single "physical"
transport.

By using such a Transport, multiple WAMP sessions can be transported over a single underlying
transport at the same time.

As an example, the proposed WebSocket extension "permessage-priority" would allow creating
multiple logical Transports for WAMP over a single underlying WebSocket connection.

Sessions running over a multiplexed Transport are completely independent: they get assigned
different session IDs, may join different realms and each session needs to authenticate itself.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 209

https://github.com/oberstet/permessage-priority/blob/master/draft-oberstein-hybi-permessage-priority.txt

Because of above, Multiplexed Transports for WAMP are actually not detailed in the WAMP spec,
but a feature of the transport being used.

Note: Currently no WAMP transport supports multiplexing. The work on the MUX
extension with WebSocket has stalled, and the permessage-priority proposal above is still
just a proposal. However, with RawSocket, we should be able to add multiplexing in the
the future (with downward compatibility).

16. WAMP Interfaces
WAMP was designed with the goals of being easy to approach and use for application developers.
Creating a procedure to expose some custom functionality should be possible in any supported
programming language using that language's native elements, with the least amount of
additional effort.

Following from that, WAMP uses dynamic typing for the application payloads of calls, call results
and error, as well as event payloads.

A WAMP router will happily forward any application payload on any procedure or topic URI as
long as the client is authorized (has permission) to execute the respective WAMP action (call,
register, publish or subscribe) on the given URI.

This approach has served WAMP well, as application developers can get started immediately, and
evolve and change payloads as they need without extra steps. These advantages in flexibility of
course come at a price, as nothing is free, and knowing that price is important to be aware of the
tradeoffs one is accepting when using dynamic typing:

problematic coordination of Interfaces within larger developer teams or between different
parties
no easy way to stabilize, freeze, document or share Interfaces
no way to programmatically describe Interfaces ("interface reflection") at run-time

Problems such above could be avoided when WAMP supported an option to formally define
WAMP-based Interfaces. This needs to answer the following questions:

How to specify the args|List and kwargs|Dict application payloads that are used in WAMP
calls, errors and events?
How to specify the type and URI (patterns) for WAMP RPCs Procedures and WAMP PubSub
Topics that make up an Interface, and how to identify an Interface itself as a collection of
Procedures and Topics?
How to package, publish and share Catalogs as a collection of Interfaces plus metadata

The following sections will describe the solution to each of above questions using WAMP IDL.

•

•
•

1.

2.

3.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 210

Using WAMP Interfaces finally allows to support the following application developer level
features:

router-based application payload validation and enforcement
WAMP interface documentation generation and autodocs Web service
publication and sharing of WAMP Interfaces and Catalogs
client binding code generation from WAMP Interfaces
run-time WAMP type reflection as part of the WAMP meta API

1.
2.
3.
4.
5.

16.1. WAMP IDL

16.1.1. Application Payload Typing

To define the application payload Arguments|list and ArgumentsKw|dict, WAMP IDL reuses the

FlatBuffers IDL, specifically, we map a pair of Arguments|list and ArgumentsKw|dict to a
FlatBuffers Table with WAMP defined FlatBuffers Attributes.

User defined WAMP application payloads are transmitted in Arguments|list and ArgumentsKw|dict
elements of the following WAMP messages:

PUBLISH

EVENT

CALL

INVOCATION

YIELD

RESULT

ERROR

A Publisher uses the

PUBLISH.Arguments|list and PUBLISH.ArgumentsKw|dict

message elements to send the event payload to be published to the Broker in PUBLISH messages.

When the event is accepted by the Broker, it will dispatch an EVENT message with

EVENT.Arguments|list and EVENT.ArgumentsKw|dict

message elements to all (eligible, and not excluded) Subscribers.

A Caller uses the

CALL.Arguments|list and CALL.ArgumentsKw|dict

•

•

•

•

•

•

•

•

•

•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 211

https://google.github.io/flatbuffers/md__schemas.html

message elements to send the call arguments to be used to the Dealer in CALL messages. When the
call is accepted by the Dealer, it will forward

INVOCATION.Arguments|list and INVOCATION.ArgumentsKw|dict

to the (or one of) Callee, and receive YIELD messages with

YIELD.Arguments|list and YIELD.ArgumentsKw|dict

message elements, which it will return to the original Caller in RESULT messages with

RESULT.Arguments|list and RESULT.ArgumentsKw|dict

In the error case, a Callee MAY return an ERROR message with

ERROR.Arguments|list and ERROR.ArgumentsKw|dict

message elements, which again is returned to the original Caller.

It is important to note that the above messages and message elements are the only ones
free for use with application and user defined payloads. In particular, even though the
following WAMP messages and message element carry payloads defined by the specific
WAMP authentication method used, they do not carry arbitrary application payloads:
HELLO.Details["authextra"]|dict, WELCOME.Details["authextra"]|dict, CHALLENGE.Extra|dict,
AUTHENTICATE.Extra|dict.

For example, the Session Meta API includes a procedure to kill all sessions by authid with:

Positional arguments (args|list)

authid|string - The authentication ID identifying sessions to close.

Keyword arguments (kwargs|dict)

reason|uri - reason for closing sessions, sent to clients in GOODBYE.Reason

message|string - additional information sent to clients in GOODBYE.Details under the key
"message".

as arguments. When successful, this procedure will return a call result with:

Positional results (results|list)

sessions|list - The list of WAMP session IDs of session that were killed.

•

•

•

•

1.

1.

2.

1.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 212

file:///home/runner/work/wamp-site-gen/wamp-site-gen/wamp-proto/%7B#session-metapi%7D

Keyword results (kwresults|dict)

None

To specify the call arguments in FlatBuffers IDL, we can define a FlatBuffers table for both args
and kwargs:

The table contains the list args as table elements (in order), unless the table element has an

Attribute kwarg, in which case the element one in kwarg.

The attributes wampid and wampuri are special markers that denote values that follow the
respective WAMP identifier rules for WAMP IDs and URIs.

When successful, the procedure will return a list of WAMP session IDs of session that were killed.
Again, we can map this to FlatBuffers IDL:

1.

/// Call args/kwargs for "wamp.session.kill_by_authid"
table SessionKillByAuthid
{
 /// The WAMP authid of the sessions to kill.
 authid: string (wampuri);

 /// A reason URI provided to the killed session(s).
 reason: string (kwarg, wampuri);

 /// A message provided to the killed session(s).
 message: string (kwarg);
}

table WampIds
{
 /// List of WAMP IDs.
 value: [uint64] (wampid);
}

16.1.2. WAMP IDL Attributes

WAMP IDL uses custom FlatBuffer attributes to

mark kwarg fields which map to WAMP keyword argument vs arg (default)

declare fields of a scalar base type to follow (stricter) WAMP rules (for IDs and URIs)
specify the WAMP action type, that is Procedure vs Topic, on service declarations

•

•
•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 213

"Attributes may be attached to a declaration, behind a field, or after the name of a table/
struct/enum/union. These may either have a value or not. Some attributes like
deprecated are understood by the compiler; user defined ones need to be declared with
the attribute declaration (like priority in the example above), and are available to query
if you parse the schema at runtime. This is useful if you write your own code generators/
editors etc., and you wish to add additional information specific to your tool (such as a
help text)." (from source).

The Attributes used in WAMP IDL are defined in <WAMP API Catalog>/src/wamp.fbs, and are
described in the following sections:

arg, kwarg

wampid

wampname, wampname_s

wampuri, wampuri_s, wampuri_p, wampuri_sp, wampuri_pp, wampuri_spp

uuid

ethadr

type

WAMP Positional and Keyword-based Payloads

Positional payloads args|list and keyword-based payloads kwargs|dict are table elements that
have one of the following Attributes:

arg (default)

kwarg

One pair of args and kwarg types is declared by one FlatBuffer table with optional attributes on
table fields, and the following rules apply or must be followed:

If neither arg nor kwarg attribute is provided, arg is assumed.

Only one of either arg or kwarg MUST be specified.

When a field has an attribute kwarg, all subsequent fields in the same table MUST also have

attribute kwarg.

WAMP IDs and URIs

Integers which contain WAMP IDs use Attribute

wampid: WAMP ID, that is an integer [1, 2^53]

•

•

•

•

•

•

•

•

•

1.

2.

3.

1.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 214

https://google.github.io/flatbuffers/md__schemas.html

Strings which contain WAMP names ("URI components"), for e.g. WAMP roles or authids use
Attributes

wampname: WAMP URI component (aka "name"), loose rules (minimum required to combine
to dotted URIs), must match regular expression ^[^\s\.#]+$.

wampname_s: WAMP URI component (aka "name"), strict rules (can be used as identifier in

most languages), must match regular expression ^[\da-z_]+$.

Strings which contain WAMP URIs or URI patterns use Attribute

wampuri: WAMP URI, loose rules, no empty URI components (aka "concrete or fully qualified
URI"), must match regular expression ^([^\s\.#]+\.)*([^\s\.#]+)$.

wampuri_s: WAMP URI, strict rules, no empty URI components, must match regular
expression ^([\da-z_]+\.)*([\da-z_]+)$.

wampuri_p: WAMP URI or URI (prefix or wildcard) pattern, loose rules (minimum required to
combine to dotted URIs), must match regular expression ^(([^\s\.#]+\.)|\.)*([^\s\.#]+)?$.

wampuri_sp: WAMP URI or URI (prefix or wildcard) pattern, strict rules (can be used as
identifier in most languages), must match regular expression ^(([\da-z_]+\.)|\.)*([\da-z_]+)?$.

wampuri_pp: WAMP URI or URI prefix pattern, loose rules (minimum required to combine to
dotted URIs), must match regular expression ^([^\s\.#]+\.)*([^\s\.#]*)$.

wampuri_spp: WAMP URI or URI prefix pattern, strict rules (can be used as identifier in most
languages), must match regular expression ^([\da-z_]+\.)*([\da-z_]*)$.

Type/Object UUIDs

Types and generally any objects can be globally identified using UUIDs . UUIDs can be
used in WAMP IDL using the uuid Attribute.

The uint128_t is a struct type defined as

2.

3.

4.

5.

6.

7.

8.

9.

[RFC4122]

/// UUID (canonical textual representation).
my_field1: string (uuid);

/// UUID (128 bit binary).
my_field2: uint128_t (uuid);

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 215

Ethereum Addresses

Ethereum addresses can be used to globally identify types or generally any object where the
global ID also needs to be conflict free, consensually shared and owned by a respective Ethereum
network user. Ethereum addresses can be used in WAMP IDL using the ethadr Attribute:

The uint160_t is a struct type defined as

WAMP Actions or Service Elements

/// An unsigned integer with 128 bits.
struct uint128_t {
 /// Least significand 32 bits.
 w0: uint32;

 /// 2nd significand 32 bits.
 w1: uint32;

 /// 3rd significand 32 bits.
 w2: uint32;

 /// Most significand 32 bits.
 w3: uint32;
}

/// Ethereum address (checksummed HEX encoded address).
my_field1: string (ethadr);

/// Ethereum address (160 bit binary).
my_field2: uint160_t (ethadr);

/// An unsigned integer with 160 bits.
struct uint160_t {
 /// Least significand 32 bits.
 w0: uint32;

 /// 2nd significand 32 bits.
 w1: uint32;

 /// 3rd significand 32 bits.
 w2: uint32;

 /// 4th significand 32 bits.
 w3: uint32;

 /// Most significand 32 bits.
 w4: uint32;
}

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 216

The type of WAMP service element procedure, topic or interface is designated using the
Attribute

type: one of "procedure", "topic" or "interface"

The type Attribute can be used to denote WAMP service interfaces, e.g. continuing with above

WAMP Meta API procedure example, the wamp.session.kill_by_authid procedure can be declared
like this:

The value of attribute type specifies a WAMP Procedure, and the call arguments and result types
of the procedure are given by:

SessionKillByAuthid: procedure call arguments args (positional argument) and kwargs
(keyword arguments) call argument follow this type
WampIds: procedure call results args (positional results) and kwargs (keyword results)

The procedure will be registered under the WAMP URI wamp.session.kill_by_authid on the
respective realm.

1.

rpc_service IWampMeta(type: "interface",
 uuid: "88711231-3d95-44bc-9464-58d871dd7fd7",
 wampuri: "wamp")
{
 session_kill_by_authid (SessionKillByAuthid): WampIds (
 type: "procedure",
 wampuri: "wamp.session.kill_by_authid"
);
}

•

•

16.1.3. WAMP Service Declaration

WAMP services include

Procedures registered by Callees, available for calling from Callers
Topics published to by Publishers, available for subscribing by Subscribers

We map the two WAMP service types to FlatBuffers IDL using the Attribute type == "procedure" |
"topic" as in this example:

•
•

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 217

When the procedure wamp.session.kill_by_authid is called to kill all sessions with a given authid,

the procedure will return a list of WAMP session IDs of the killed sessions via WampIds.

Independently, meta events on topic wamp.session.on_leave are published with detailed

SessionInfo of the sessions left as event payload. This follows a common "do-something-and-
notify-observers" pattern for a pair of a procedure and topic working together.

The Interface then collects a number of Procedures and Topics under one named unit of type ==
"interface" which includes a UUID in an uuid Attribute.

Declaring Services

Declaring services involves three element types:

Topics
Procedures
Interfaces

The general form for declaring Topics is:

The application payload transmitted in EVENTs is typed via <TOPIC-PAYLOAD-TABLE>. The return

type MUST always be Void, which is a dummy marker type declared in wamp.fbs.

rpc_service IWampMeta(type: "interface",
 uuid: "88711231-3d95-44bc-9464-58d871dd7fd7",
 wampuri: "wamp")
{
 session_kill_by_authid (SessionKillByAuthid): WampIds (
 type: "procedure",
 wampuri: "wamp.session.kill_by_authid"
);

 session_on_leave (SessionInfo): Void (
 type: "topic",
 wampuri: "wamp.session.on_leave"
);
}

•
•
•

<TOPIC-METHOD> (<TOPIC-PAYLOAD-TABLE>): Void (
 type: "topic",
 wampuri: <TOPIC-URI>
);

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 218

Note: With Acknowledge Event Delivery (future), when a Subscriber receives an EVENT,
the Subscriber will return an Event-Acknowledgement including args/ kwargs. Once we do
have this feature in WAMP PubSub, the type of the Event-Acknowledgement can be
specified using a non-Void return type.

The general form for declaring Procedures is:

The application payload transmitted in CALLs is typed via <CALL-PAYLOAD-TABLE>. The return

type of the CALL is typed via <CALLRESULT-PAYLOAD-TABLE>.

The general form for declaring Interfaces, which collect Procedures and Topics is:

Note: We are reusing FlatBuffers IDL here, specifically the rpc_service service definitions
which were designed for gRPC. We reuse this element to declare both WAMP Topics and
Procedures by using the type Attribute. Do not get confused with "rpc" in rpc_service.

Declaring Progressive Call Results

Write me.

Declaring Call Errors

Write me.

<PROCEDURE-METHOD> (<CALL-PAYLOAD-TABLE>): <CALLRESULT-PAYLOAD-TABLE> (
 type: "procedure",
 wampuri: <PROCEDURE-URI>
);

rpc_service <INTERFACE> (
 type: "interface",
 uuid: <INTERFACE-UUID>,
 wampuri: <INTERFACE-URI-PREFIX>
) {
 /// Method declarations of WAMP Procedures and Topics
}

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 219

https://grpc.io/blog/grpc-flatbuffers/

16.2. Interface Catalogs
Collections of types defined in FlatBuffers IDL are bundled in Interface Catalogs which are just
ZIP files with

one catalog.yaml file with catalog metadata
one or more *.bfbs compiled FlatBuffer IDL schemas

and optionally

schema source files
image and documentation files

•
•

•
•

16.2.1. Catalog Archive File

The contents of an example.zip interface catalog:

The bundled Catalog Interfaces in above are FlatBuffers binary schema files which are compiled
using flatc

from FlatBuffers IDL sources, for example:

unzip -l build/example.zip
Archive: build/example.zip
 Length Date Time Name
--------- ---------- ----- ----
 0 1980-00-00 00:00 schema/
 14992 1980-00-00 00:00 schema/example2.bfbs
 15088 1980-00-00 00:00 schema/example4.bfbs
 13360 1980-00-00 00:00 schema/example3.bfbs
 8932 1980-00-00 00:00 schema/example1.bfbs
 6520 1980-00-00 00:00 schema/wamp.bfbs
 1564 1980-00-00 00:00 README.md
 0 1980-00-00 00:00 img/
 13895 1980-00-00 00:00 img/logo.png
 1070 1980-00-00 00:00 LICENSE.txt
 1288 1980-00-00 00:00 catalog.yaml
--------- -------
 76709 11 files

flatc -o ./schema --binary --schema --bfbs-comments --bfbs-builtins ./src

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 220

file:///home/runner/work/wamp-site-gen/wamp-site-gen/wamp-proto/catalog.yaml

rpc_service IExample1 (
 type: "interface", uuid: "bf469db0-efea-425b-8de4-24b5770e6241"
) {
 my_procedure1 (TestRequest1): TestResponse1 (
 type: "procedure", wampuri: "com.example.my_procedure1"
);

 on_something1 (TestEvent1): Void (
 type: "topic", wampuri: "com.example.on_something1"
);
}

16.2.2. Catalog Metadata

The catalog.yaml file contains catalog metadata in YAML Format:

Field Description

name Catalog name, which must contain only lower-case letter, numbers, hyphen and
underscore so the catalog name can be used in HTTP URLs

version Catalog version (e.g. semver or calendarver version string)

title Catalog title for display purposes

description Catalog description, a short text describing the API catalog

schemas FlatBuffers schemas compiled into binary schema reflection format

author Catalog author

publisher Ethereum Mainnet address of publisher

license SPDX license identifier (see https://spdx.org/licenses/) for the catalog

keywords Catalog keywords to hint at the contents, topic, usage or similar of the catalog

homepage Catalog home page or project page

git Git source repository location

theme Catalog visual theme

Table 18

Here is a complete example:

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 221

https://yaml.org/
https://spdx.org/licenses/

name: example

version: 22.6.1

title: WAMP Example API Catalog

description: An example of a WAMP API catalog.

schemas:
 - schema/example1.bfbs
 - schema/example2.bfbs
 - schema/example3.bfbs
 - schema/example4.bfbs

author: typedef int GmbH

publisher: "0x60CC48BFC44b48A53e793FE4cB50e2d625BABB27"

license: MIT

keywords:
 - wamp
 - sample

homepage: https://wamp-proto.org/

git: https://github.com/wamp-proto/wamp-proto.git

theme:
 background: "#333333"
 text: "#e0e0e0"
 highlight: "#00ccff"
 logo: img/logo.png

16.2.3. Catalog Sharing and Publication

Archive File Preparation

The ZIP archive format and tools, by default, include filesystem and other metadata from the
host producing the archive. That information usually changes, per-archive run, as e.g. the
current datetime is included, which obviously progresses.

When sharing and publishing a WAMP Interface Catalog, it is crucial that the archive only
depends on the actual contents of the compressed files.

Removing all unwanted ZIP archive metadata can be achieved using stripzip:

stripzip example.zip

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 222

https://linux.die.net/man/1/zip
https://github.com/KittyHawkCorp/stripzip

The user build scripts for compiling and bundling an Interface Catalog ZIP file MUST be
repeatable, and only depend on the input source files. A build process that fulfills this
requirement is called Reproducible build.

The easiest way to check if your build scripts producing example.zip is reproducible is repeat the
build and check that the file fingerprint of the resulting archive stays the same:

Catalog Publication on Ethereum and IPFS

Write me.

openssl sha256 example.zip

16.3. Interface Reflection
Feature status: sketch

Reflection denotes the ability of WAMP peers to examine the procedures, topics and errors
provided or used by other peers.

I.e. a WAMP Caller, Callee, Subscriber or Publisher may be interested in retrieving a machine
readable list and description of WAMP procedures and topics it is authorized to access or provide
in the context of a WAMP session with a Dealer or Broker.

Reflection may be useful in the following cases:

documentation
discoverability
generating stubs and proxies

WAMP predefines the following procedures for performing run-time reflection on WAMP peers
which act as Brokers and/or Dealers.

Predefined WAMP reflection procedures to list resources by type:

Predefined WAMP reflection procedures to describe resources by type:

A peer that acts as a Broker SHOULD announce support for the reflection API by sending

•
•
•

 wamp.reflection.topic.list
 wamp.reflection.procedure.list
 wamp.reflection.error.list

 wamp.reflection.topic.describe
 wamp.reflection.procedure.describe
 wamp.reflection.error.describe

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 223

https://en.wikipedia.org/wiki/Reproducible_builds

A peer that acts as a Dealer SHOULD announce support for the reflection API by sending

Since Brokers might provide (broker) procedures and Dealers might provide (dealer)
topics, both SHOULD implement the complete API above (even if the peer only
implements one of Broker or Dealer roles).

Reflection Events and Procedures

A topic or procedure is defined for reflection:

A topic or procedure is asked to be described (reflected upon):

A topic or procedure has been defined for reflection:

A topic or procedure has been undefined from reflection:

 HELLO.Details.roles.broker.reflection|bool := true

 HELLO.Details.roles.dealer.reflection|bool := true

 wamp.reflect.define

 wamp.reflect.describe

 wamp.reflect.on_define

 wamp.reflect.on_undefine

17. Router-to-Router Links
Write me.

Resolve global realm name R_name via ENS to the on-chain address R_adr of the realm.
Retrieve list of Domains R_DR routing realm R_adr.
Retrieve the node's N1 own domain D_N1 given the node's address N1_adr.
Check D_N1 is in R_DR.
Select a domain D (!=D_N1) from R_DR and get endpoint E for D.
Connect to D and authenticate via WAMP-Cryptosign.

1.
2.
3.
4.
5.
6.

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 224

Verify connected node N2 by checking against D
Subscribe to wamp.r2r.traffic_payable

When receiving a traffic payable event, buy the respective key by calling xbr.pool.buy_key,
and calling wamp.r2r.submit_traffic_payment, which returns a traffic usage report.

Data Spaces are end-to-end encrypted routing realms connecting data driven microservices.

The message routing between the microservice endpoints in

7.
8.

9.

18. Advanced Profile URIs
WAMP pre-defines the following error URIs for the Advanced Profile. WAMP peers SHOULD
only use the defined error messages.

18.1. Session Close
The Client session has been forcefully terminated by the Router - used as a GOODBYE (or ABORT)
reason.

 wamp.close.killed

18.2. Authentication
No authentication method the Client offered is accepted.

The Client attempted to authenticate for a non-existing Realm (realm|string).

The Client attempted to authenticate for a non-existing Role (authrole|string).

The Client authenticated for a non-existing Principal (authid|string).

The authentication as presented by the Client is denied (e.g. "wrong password").

 wamp.error.no_matching_auth_method

 wamp.error.no_such_realm

 wamp.error.no_such_role

 wamp.error.no_such_principal

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 225

The Client authentication was rejected due to a technical runtime failure ("fail secure"
operation).

The Client did not provide the required, non-anonymous, authentication information.

 wamp.error.authentication_denied

 wamp.error.authentication_failed

 wamp.error.authentication_required

18.3. Authorization
The Principal is not authorized to perform such Action.

Authorization of the Principal to perform the given Action was rejected due to a technical
runtime failure ("fail secure" operation).

Authorization of the Principal is required to perform the given Action. This can be used for
capability-based access control.

 wamp.error.authorization_denied

 wamp.error.authorization_failed

 wamp.error.authorization_required

18.4. Remote Procedure Calls
A Dealer or Callee terminated a call that timed out

A Peer requested an interaction with an option that was disallowed by the Router

A Router rejected client request to disclose its identity

 wamp.error.timeout

 wamp.error.option_not_allowed

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 226

A Router encountered a network failure

A Callee is not able to handle an invocation for a call and intends for the Router to re-route the
call to another fitting Callee. For details, refer to RPC Call Rerouting

A Dealer could not perform a call, since a procedure with the given URI is registered, but all
available registrations have responded with wamp.error.unavailable

A Dealer received a CALL message with advanced features that cannot be processed by the Callee

 wamp.error.option_disallowed.disclose_me

 wamp.error.network_failure

 wamp.error.unavailable

 wamp.error.no_available_callee

 wamp.error.feature_not_supported

18.5. Terminology
This chapter contains a list of technical terms used in this specification, along with their
respective meanings.

Implementations SHOULD use terms as defined here in their public interfaces and
documentation, and SHOULD NOT reinvent or reinterpret terms. Users SHOULD be able to
transfer their WAMP knowledge from one implementation to another. This is to support the
overarching goal of WAMP to free application developers from restrictions when building
distributed applications, both at the network level, and when choosing (or switching) the WAMP
implementations used.

Our goal is to maximize user choice and experience when developing WAMP-based
applications, both formally (open protocol and open source) as well as practically (switching
costs).

18.5.1. Fundamental

Term Definition

User A person (or organization) running a WAMP Client or Router

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 227

file:///home/runner/work/wamp-site-gen/wamp-site-gen/wamp-proto/ap_rpc_call_rerouting.md

Term Definition

Client A program run by a User, with application code using WAMP for application-
level communications

Router A program run by a User, with middleware code using WAMP to provide
application routing services

Peer A WAMP Client or Router. An implementation might embed, provide or use
both roles

Realm Isolated WAMP URI namespace serving as a routing and administrative
domain, optionally protected by AA

Transport A message-based, reliable, ordered, bidirectional (full-duplex) channel over
which Peers communicate

Connection An underlying entity (if any) carrying the Transport, e.g. a network connection,
pipe, queue or such

Session Transient conversation between a Client and a Router, within a Realm and over
a Transport

Message Indivisible unit of information transmitted between peers

Serializer Encodes WAMP messages, with application payloads, into byte strings for
transport

Table 19

18.5.2. Authentication and Authorization (AA)

Term Definition

Authentication Establishes the identity of a Session within a Realm

Principal A Principal (authid) is any User that can be authenticated under a

Realm (realm) and runs in the security context of a Role (authrole)
within that Realm.

Credentials The authentication information and secrets used during

Authorization A decision on permitting a Principal to perform a given Action on an
URI or URI pattern

Access Control Policy for selective restriction of Actions on URIs or URI patterns
performed by Principals

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 228

Term Definition

Role-based Access
Control (RBAC)

An Access Control policy based on Realm (realm), Principal's Role

(authrole), URI or URI pattern, and Action

Discretionary
Access Control

An Access Control policy controlled by Users and enforced by Routers

Mandatory Access
Control

An Access Control policy controlled by Router Administrators or Realm
Owners, and enforced by Routers

Capability-based
Access Control

An Access Control policy where Callers, Callees, Publishers, Subscribers
directly share capabilities with each other

Subject The originating Session of an Action in the context of Authorization

Object A (fully qualified) URI or URI pattern representing the target of an
Action in the context of Authorization

Action One of the four core WAMP operations: register, call, subscribe, and
publish

Table 20

18.5.3. Remote Procedure Calls

Term Definition

Caller A Caller is a Session that calls, with application payloads, a (fully qualified)
Procedure for call routing

Callee A Callee is a Session that responds to Procedure call invocations by yielding
back application result payloads

Procedure A Procedure is an URI or URI pattern that can be registered for call routing by
Callees

Registration A Router record resulting from a Callee successfully registering a Procedure
for call routing

Call A transient Router record resulting from a Caller successfully calling a
Procedure for call routing

Invocation A call request and payload that are routed to a Callee having a matching
Registration for the called Procedure

Table 21

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 229

18.5.4. Publish and Subscribe

Term Definition

Publisher A Publisher is a Session that publishes application payloads to a (fully
qualified) Topic for event routing

Subscriber A Subscriber is a Session that subscribes to a Topic to receive application
payloads on matching events

Topic A Topic is an URI or URI pattern that can be subscribed to for event routing by
Subscribers

Subscription A Router record resulting from a Subscriber successfully subscribing to a
Topic for event routing

Publication A transient Router record resulting from a Publisher successfully publishing
to a Topic for event routing

Event A publication that is routed to Subscribers having matching Subscriptions to
the published Topic.

Table 22

19. IANA Considerations
WAMP uses the Subprotocol Identifier wamp registered with the WebSocket Subprotocol Name
Registry, operated by the Internet Assigned Numbers Authority (IANA).

20. Conformance Requirements
All diagrams, examples, and notes in this specification are non-normative, as are all sections
explicitly marked non-normative. Everything else in this specification is normative.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in RFC 2119 .

Requirements phrased in the imperative as part of algorithms (such as "strip any leading space
characters" or "return false and abort these steps") are to be interpreted with the meaning of the
key word ("MUST", "SHOULD", "MAY", etc.) used in introducing the algorithm.

Conformance requirements phrased as algorithms or specific steps MAY be implemented in any
manner, so long as the end result is equivalent.

[RFC2119]

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 230

https://www.iana.org/assignments/websocket/websocket.xhtml
https://www.iana.org/assignments/websocket/websocket.xhtml

[RFC3629]

[RFC3986]

[RFC4122]

22. Normative References
, , , ,

, November 2003,
.

, , and ,
, , , , January 2005,

.

, , and ,
, , , July 2005,

.

20.1. Terminology and Other Conventions
Key terms such as named algorithms or definitions are indicated like this when they first occur,
and are capitalized throughout the text.

21. Contributors
WAMP was developed in an open process from the beginning, and a lot of people have
contributed ideas and other feedback. Here we are listing people who have opted in to being
mentioned:

Alexander Goedde
Amber Brown
Andrew Gillis
David Chappelle
Elvis Stansvik
Emile Cormier
Felipe Gasper
Johan 't Hart
Josh Soref
Konstantin Burkalev
Pahaz Blinov
Paolo Angioletti
Roberto Requena
Roger Erens
Christoph Herzog
Tobias Oberstein
Zhigang Wang

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629
DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/
rfc3629>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):
Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986
<https://www.rfc-editor.org/info/rfc3986>

Leach, P. Mealling, M. R. Salz "A Universally Unique IDentifier (UUID) URN
Namespace" RFC 4122 DOI 10.17487/RFC4122 <https://www.rfc-
editor.org/info/rfc4122>

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 231

https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122

[RFC4648]

[RFC6455]

[RFC7159]

[RFC8032]

[RFC8949]

[RFC2119]

, , ,
, October 2006, .

 and , , ,
, December 2011, .

, ,
, , March 2014,
.

 and ,
, , , January 2017,

.

 and , ,
, , , December 2020,

.

23. Informative References
, , ,

, , March 1997,
.

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI
10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

Fette, I. A. Melnikov "The WebSocket Protocol" RFC 6455 DOI 10.17487/
RFC6455 <https://www.rfc-editor.org/info/rfc6455>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
RFC 7159 DOI 10.17487/RFC7159 <https://www.rfc-editor.org/info/
rfc7159>

Josefsson, S. I. Liusvaara "Edwards-Curve Digital Signature Algorithm
(EdDSA)" RFC 8032 DOI 10.17487/RFC8032 <https://www.rfc-
editor.org/info/rfc8032>

Bormann, C. P. Hoffman "Concise Binary Object Representation (CBOR)"
STD 94 RFC 8949 DOI 10.17487/RFC8949 <https://www.rfc-
editor.org/info/rfc8949>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Author's Address
Tobias Oberstein
typedef int GmbH

tobias.oberstein@typedefint.euEmail:

Internet-Draft WAMP July 2024

Oberstein Expires 24 January 2025 Page 232

https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc8949
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
mailto:tobias.oberstein@typedefint.eu

	The Web Application Messaging Protocol
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. WAMP Basic Profile
	1.1. Basic vs Advanced Profile
	1.2. Introduction
	1.3. Protocol Overview
	1.3.1. Realms, Sessions and Transports
	1.3.2. Peers and Roles
	1.3.3. Publish & Subscribe
	1.3.4. Remote Procedure Calls

	1.4. Design Aspects
	1.4.1. Application Code
	1.4.2. Language Agnostic
	1.4.3. Symmetric Messaging
	1.4.4. Peers with multiple Roles
	1.4.5. Relationship to WebSocket

	2. Building Blocks
	2.1. Identifiers
	2.1.1. URIs
	2.1.2. IDs

	2.2. Serializers
	2.3. Transports
	2.3.1. WebSocket Transport
	2.3.2. Transport and Session Lifetime
	2.3.3. Protocol Errors

	3. Messages
	3.1. Extensibility
	3.2. No Polymorphism
	3.3. Structure
	3.4. Message Definitions
	3.4.1. Session Lifecycle
	3.4.1.1. HELLO
	3.4.1.2. WELCOME
	3.4.1.3. ABORT
	3.4.1.4. GOODBYE
	3.4.1.5. ERROR

	3.4.2. Publish & Subscribe
	3.4.2.1. PUBLISH
	3.4.2.2. PUBLISHED
	3.4.2.3. SUBSCRIBE
	3.4.2.4. SUBSCRIBED
	3.4.2.5. UNSUBSCRIBE
	3.4.2.6. UNSUBSCRIBED
	3.4.2.7. EVENT

	3.4.3. Routed Remote Procedure Calls
	3.4.3.1. CALL
	3.4.3.2. RESULT
	3.4.3.3. REGISTER
	3.4.3.4. REGISTERED
	3.4.3.5. UNREGISTER
	3.4.3.6. UNREGISTERED
	3.4.3.7. INVOCATION
	3.4.3.8. YIELD

	3.5. Message Codes and Direction
	3.6. Extension Messages
	3.7. Empty Arguments and Keyword Arguments

	4. Sessions
	4.1. Session Establishment
	4.1.1. HELLO
	4.1.2. WELCOME
	4.1.3. ABORT

	4.2. Session Closing
	4.2.1. GOODBYE

	5. Publish and Subscribe
	5.1. Subscribing and Unsubscribing
	5.1.1. SUBSCRIBE
	5.1.2. SUBSCRIBED
	5.1.3. Subscribe ERROR
	5.1.4. UNSUBSCRIBE
	5.1.5. UNSUBSCRIBED
	5.1.6. Unsubscribe ERROR

	5.2. Publishing and Events
	5.2.1. PUBLISH
	5.2.2. PUBLISHED
	5.2.3. Publish ERROR
	5.2.4. EVENT

	6. Remote Procedure Calls
	6.1. Registering and Unregistering
	6.1.1. REGISTER
	6.1.2. REGISTERED
	6.1.3. Register ERROR
	6.1.4. UNREGISTER
	6.1.5. UNREGISTERED
	6.1.6. Unregister ERROR

	6.2. Calling and Invocations
	6.2.1. CALL
	6.2.2. INVOCATION
	6.2.3. YIELD
	6.2.4. RESULT
	6.2.5. Invocation ERROR
	6.2.6. Call ERROR

	6.3. Caller Leaving During an RPC Invocation
	6.4. Callee Leaving During an RPC Invocation

	7. Security Model
	7.1. Ordering Guarantees
	7.2. Transport Encryption and Integrity
	7.3. Router Authentication
	7.4. Client Authentication
	7.5. Routers are trusted

	8. Basic Profile URIs
	9. WAMP Advanced Profile
	9.1. Feature Announcement
	9.2. Additional Messages
	9.2.1. CHALLENGE
	9.2.2. AUTHENTICATE
	9.2.3. CANCEL
	9.2.4. INTERRUPT

	10. Meta API
	10.1. Session Meta API
	10.1.1. Events
	10.1.1.1. wamp.session.on_join
	10.1.1.2. wamp.session.on_leave

	10.1.2. Procedures
	10.1.2.1. wamp.session.count
	10.1.2.2. wamp.session.list
	10.1.2.3. wamp.session.get
	10.1.2.4. wamp.session.kill
	10.1.2.5. wamp.session.kill_by_authid
	10.1.2.6. wamp.session.kill_by_authrole
	10.1.2.7. wamp.session.kill_all

	10.2. Registration Meta API
	10.2.1. Events
	10.2.1.1. wamp.registration.on_create
	10.2.1.2. wamp.registration.on_register
	10.2.1.3. wamp.registration.on_unregister
	10.2.1.4. wamp.registration.on_delete

	10.2.2. Procedures
	10.2.2.1. wamp.registration.list
	10.2.2.2. wamp.registration.lookup
	10.2.2.3. wamp.registration.match
	10.2.2.4. wamp.registration.get
	10.2.2.5. wamp.registration.list_callees
	10.2.2.6. wamp.registration.count_callees

	10.3. Subscriptions Meta API
	10.3.1. Events
	10.3.1.1. wamp.subscription.on_create
	10.3.1.2. wamp.subscription.on_subscribe
	10.3.1.3. wamp.subscription.on_unsubscribe
	10.3.1.4. wamp.subscription.on_delete

	10.3.2. Procedures
	10.3.2.1. wamp.subscription.list
	10.3.2.2. wamp.subscription.lookup
	10.3.2.3. wamp.subscription.match
	10.3.2.4. wamp.subscription.get
	10.3.2.5. wamp.subscription.list_subscribers
	10.3.2.6. wamp.subscription.count_subscribers

	11. Advanced RPC
	11.1. Progressive Call Results
	11.2. Progressive Call Invocations
	11.3. Call Timeouts
	11.4. Call Canceling
	11.5. Call Re-Routing
	11.6. Caller Identification
	11.7. Call Trust Levels
	11.8. Pattern-based Registrations
	11.8.1. Prefix Matching
	11.8.2. Wildcard Matching
	11.8.3. Design Aspects

	11.9. Shared Registration
	11.9.1. Load Balancing
	11.9.2. Hot Stand-By

	11.10. Sharded Registration
	11.10.1. "All" Calls
	11.10.2. "Partitioned" Calls

	11.11. Registration Revocation

	12. Advanced PubSub
	12.1. Subscriber Black- and Whitelisting
	12.2. Publisher Exclusion
	12.3. Publisher Identification
	12.4. Publication Trust Levels
	12.5. Pattern-based Subscription
	12.5.1. Prefix Matching
	12.5.2. Wildcard Matching
	12.5.3. Design Aspects

	12.6. Sharded Subscription
	12.7. Event History
	12.8. Event Retention
	12.9. Subscription Revocation
	12.10. Session Testament

	13. Authentication Methods
	13.1. Ticket-based Authentication
	13.2. Challenge Response Authentication
	13.3. Salted Challenge Response Authentication
	13.4. Cryptosign-based Authentication
	13.4.1. Client Authentication
	13.4.1.1. Computing the Signature
	13.4.1.2. Example Message Flow
	13.4.1.3. Test Vectors

	13.4.2. TLS Channel Binding
	13.4.3. Router Authentication
	13.4.4. Trustroots and Certificates
	13.4.4.1. Certificate Chains
	13.4.4.2. Certificate Types
	13.4.4.3. Capabilities
	13.4.4.4. Certificate Chain Verification
	13.4.4.5. Trustroots
	13.4.4.5.1. Standalone Trustroots
	13.4.4.5.2. On-chain Trustroots

	13.4.5. Remote Attestation
	13.4.6. Example Message Exchanges
	13.4.6.1. Example 1
	13.4.6.2. Example 2
	13.4.6.3. Example 3

	13.5. Dynamic Authentication API
	13.6. Authorization

	14. Advanced Security Features
	14.1. Payload Passthru Mode
	14.2. Payload End-to-End Encryption

	15. Advanced Transports and Serializers
	15.1. RawSocket Transport
	15.2. Message Batching
	15.3. HTTP Longpoll Transport
	15.4. Binary support in JSON
	15.5. Multiplexed Transport

	16. WAMP Interfaces
	16.1. WAMP IDL
	16.1.1. Application Payload Typing
	16.1.2. WAMP IDL Attributes
	16.1.3. WAMP Service Declaration

	16.2. Interface Catalogs
	16.2.1. Catalog Archive File
	16.2.2. Catalog Metadata
	16.2.3. Catalog Sharing and Publication

	16.3. Interface Reflection

	17. Router-to-Router Links
	18. Advanced Profile URIs
	18.1. Session Close
	18.2. Authentication
	18.3. Authorization
	18.4. Remote Procedure Calls
	18.5. Terminology
	18.5.1. Fundamental
	18.5.2. Authentication and Authorization (AA)
	18.5.3. Remote Procedure Calls
	18.5.4. Publish and Subscribe

	19. IANA Considerations
	20. Conformance Requirements
	20.1. Terminology and Other Conventions

	21. Contributors
	22. Normative References
	23. Informative References
	Author's Address

